--- license: apache-2.0 datasets: - strangerzonehf/Super-Emojies-DLC language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - Emoji-Scope - Google - CrossEmoji Classifier --- ![14.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/_mq83JtFZrdirluVNXqX2.png) # **Emoji-Scope** > **Emoji-Scope** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify emoji images into different style categories using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Apple Style 0.9336 0.8538 0.8919 725 DoCoMo Style 0.9130 0.8400 0.8750 100 Facebook Style 0.8713 0.8915 0.8813 691 Gmail Style 0.8289 0.8750 0.8514 288 Google Style 0.8725 0.9505 0.9098 727 JoyPixels Style 0.8960 0.9614 0.9276 726 KDDI Style 0.9444 0.9333 0.9389 255 Samsung Style 0.9584 0.9681 0.9632 690 SoftBank Style 0.8407 0.8053 0.8226 190 Twitter Style 0.9939 0.8900 0.9390 727 Windows Style 0.9949 0.9949 0.9949 583 accuracy 0.9200 5702 macro avg 0.9134 0.9058 0.9087 5702 weighted avg 0.9222 0.9200 0.9201 5702 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/GAcbnAUhe4Tsf4G6LwEt8.png) The model categorizes images into eleven emoji styles: - **Class 0:** "Apple Style" - **Class 1:** "DoCoMo Style" - **Class 2:** "Facebook Style" - **Class 3:** "Gmail Style" - **Class 4:** "Google Style" - **Class 5:** "JoyPixels Style" - **Class 6:** "KDDI Style" - **Class 7:** "Samsung Style" - **Class 8:** "SoftBank Style" - **Class 9:** "Twitter Style" - **Class 10:** "Windows Style" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Emoji-Scope" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def emoji_classification(image): """Predicts the style category of an emoji image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Apple Style", "1": "DoCoMo Style", "2": "Facebook Style", "3": "Gmail Style", "4": "Google Style", "5": "JoyPixels Style", "6": "KDDI Style", "7": "Samsung Style", "8": "SoftBank Style", "9": "Twitter Style", "10": "Windows Style" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=emoji_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Emoji Style Classification", description="Upload an emoji image to classify its style." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Emoji-Scope** model is designed to classify emoji images based on different style categories. Potential use cases include: - **Emoji Standardization:** Identifying different emoji styles across platforms. - **User Experience Design:** Helping developers ensure consistency in emoji usage. - **Digital Art & Design:** Assisting artists in selecting preferred emoji styles. - **Educational Purposes:** Teaching differences in emoji representation.