Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,20 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
4 |
|
5 |
```py
|
6 |
Classification Report:
|
@@ -151,4 +165,215 @@ Face Scrub and Exfoliator 0.0000 0.0000 0.0000 4
|
|
151 |
accuracy 0.8911 44072
|
152 |
macro avg 0.7131 0.6174 0.6361 44072
|
153 |
weighted avg 0.8877 0.8911 0.8846 44072
|
154 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- google/siglip2-base-patch16-224
|
7 |
+
pipeline_tag: image-classification
|
8 |
+
library_name: transformers
|
9 |
+
tags:
|
10 |
+
- fashion
|
11 |
+
- articleType
|
12 |
+
- product
|
13 |
+
- siglip2
|
14 |
---
|
15 |
+
# **Fashion-Product-articleType**
|
16 |
+
|
17 |
+
> **Fashion-Product-articleType** is a vision model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies fashion product images into one of 141 article types.
|
18 |
|
19 |
```py
|
20 |
Classification Report:
|
|
|
165 |
accuracy 0.8911 44072
|
166 |
macro avg 0.7131 0.6174 0.6361 44072
|
167 |
weighted avg 0.8877 0.8911 0.8846 44072
|
168 |
+
```
|
169 |
+
|
170 |
+
The model predicts one of the following **article types** for fashion products, such as:
|
171 |
+
|
172 |
+
- **0:** Accessory Gift Set
|
173 |
+
- **1:** Baby Dolls
|
174 |
+
- **2:** Backpacks
|
175 |
+
- **3:** Bangle
|
176 |
+
- **...**
|
177 |
+
- **140:** Wristbands
|
178 |
+
|
179 |
+
---
|
180 |
+
|
181 |
+
# **Run with Transformers 🤗**
|
182 |
+
|
183 |
+
```bash
|
184 |
+
pip install -q transformers torch pillow gradio
|
185 |
+
```
|
186 |
+
|
187 |
+
```python
|
188 |
+
import gradio as gr
|
189 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
190 |
+
from PIL import Image
|
191 |
+
import torch
|
192 |
+
|
193 |
+
# Load model and processor
|
194 |
+
model_name = "prithivMLmods/Fashion-Product-articleType" # Replace with your actual model path
|
195 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
196 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
197 |
+
|
198 |
+
# Label mapping
|
199 |
+
id2label = {
|
200 |
+
0: "Accessory Gift Set",
|
201 |
+
1: "Baby Dolls",
|
202 |
+
2: "Backpacks",
|
203 |
+
3: "Bangle",
|
204 |
+
4: "Basketballs",
|
205 |
+
5: "Bath Robe",
|
206 |
+
6: "Beauty Accessory",
|
207 |
+
7: "Belts",
|
208 |
+
8: "Blazers",
|
209 |
+
9: "Body Lotion",
|
210 |
+
10: "Body Wash and Scrub",
|
211 |
+
11: "Booties",
|
212 |
+
12: "Boxers",
|
213 |
+
13: "Bra",
|
214 |
+
14: "Bracelet",
|
215 |
+
15: "Briefs",
|
216 |
+
16: "Camisoles",
|
217 |
+
17: "Capris",
|
218 |
+
18: "Caps",
|
219 |
+
19: "Casual Shoes",
|
220 |
+
20: "Churidar",
|
221 |
+
21: "Clothing Set",
|
222 |
+
22: "Clutches",
|
223 |
+
23: "Compact",
|
224 |
+
24: "Concealer",
|
225 |
+
25: "Cufflinks",
|
226 |
+
26: "Cushion Covers",
|
227 |
+
27: "Deodorant",
|
228 |
+
28: "Dresses",
|
229 |
+
29: "Duffel Bag",
|
230 |
+
30: "Dupatta",
|
231 |
+
31: "Earrings",
|
232 |
+
32: "Eye Cream",
|
233 |
+
33: "Eyeshadow",
|
234 |
+
34: "Face Moisturisers",
|
235 |
+
35: "Face Scrub and Exfoliator",
|
236 |
+
36: "Face Serum and Gel",
|
237 |
+
37: "Face Wash and Cleanser",
|
238 |
+
38: "Flats",
|
239 |
+
39: "Flip Flops",
|
240 |
+
40: "Footballs",
|
241 |
+
41: "Formal Shoes",
|
242 |
+
42: "Foundation and Primer",
|
243 |
+
43: "Fragrance Gift Set",
|
244 |
+
44: "Free Gifts",
|
245 |
+
45: "Gloves",
|
246 |
+
46: "Hair Accessory",
|
247 |
+
47: "Hair Colour",
|
248 |
+
48: "Handbags",
|
249 |
+
49: "Hat",
|
250 |
+
50: "Headband",
|
251 |
+
51: "Heels",
|
252 |
+
52: "Highlighter and Blush",
|
253 |
+
53: "Innerwear Vests",
|
254 |
+
54: "Ipad",
|
255 |
+
55: "Jackets",
|
256 |
+
56: "Jeans",
|
257 |
+
57: "Jeggings",
|
258 |
+
58: "Jewellery Set",
|
259 |
+
59: "Jumpsuit",
|
260 |
+
60: "Kajal and Eyeliner",
|
261 |
+
61: "Key chain",
|
262 |
+
62: "Kurta Sets",
|
263 |
+
63: "Kurtas",
|
264 |
+
64: "Kurtis",
|
265 |
+
65: "Laptop Bag",
|
266 |
+
66: "Leggings",
|
267 |
+
67: "Lehenga Choli",
|
268 |
+
68: "Lip Care",
|
269 |
+
69: "Lip Gloss",
|
270 |
+
70: "Lip Liner",
|
271 |
+
71: "Lip Plumper",
|
272 |
+
72: "Lipstick",
|
273 |
+
73: "Lounge Pants",
|
274 |
+
74: "Lounge Shorts",
|
275 |
+
75: "Lounge Tshirts",
|
276 |
+
76: "Makeup Remover",
|
277 |
+
77: "Mascara",
|
278 |
+
78: "Mask and Peel",
|
279 |
+
79: "Mens Grooming Kit",
|
280 |
+
80: "Messenger Bag",
|
281 |
+
81: "Mobile Pouch",
|
282 |
+
82: "Mufflers",
|
283 |
+
83: "Nail Essentials",
|
284 |
+
84: "Nail Polish",
|
285 |
+
85: "Necklace and Chains",
|
286 |
+
86: "Nehru Jackets",
|
287 |
+
87: "Night suits",
|
288 |
+
88: "Nightdress",
|
289 |
+
89: "Patiala",
|
290 |
+
90: "Pendant",
|
291 |
+
91: "Perfume and Body Mist",
|
292 |
+
92: "Rain Jacket",
|
293 |
+
93: "Ring",
|
294 |
+
94: "Robe",
|
295 |
+
95: "Rompers",
|
296 |
+
96: "Rucksacks",
|
297 |
+
97: "Salwar",
|
298 |
+
98: "Salwar and Dupatta",
|
299 |
+
99: "Sandals",
|
300 |
+
100: "Sarees",
|
301 |
+
101: "Scarves",
|
302 |
+
102: "Shapewear",
|
303 |
+
103: "Shirts",
|
304 |
+
104: "Shoe Accessories",
|
305 |
+
105: "Shoe Laces",
|
306 |
+
106: "Shorts",
|
307 |
+
107: "Shrug",
|
308 |
+
108: "Skirts",
|
309 |
+
109: "Socks",
|
310 |
+
110: "Sports Sandals",
|
311 |
+
111: "Sports Shoes",
|
312 |
+
112: "Stockings",
|
313 |
+
113: "Stoles",
|
314 |
+
114: "Sunglasses",
|
315 |
+
115: "Sunscreen",
|
316 |
+
116: "Suspenders",
|
317 |
+
117: "Sweaters",
|
318 |
+
118: "Sweatshirts",
|
319 |
+
119: "Swimwear",
|
320 |
+
120: "Tablet Sleeve",
|
321 |
+
121: "Ties",
|
322 |
+
122: "Ties and Cufflinks",
|
323 |
+
123: "Tights",
|
324 |
+
124: "Toner",
|
325 |
+
125: "Tops",
|
326 |
+
126: "Track Pants",
|
327 |
+
127: "Tracksuits",
|
328 |
+
128: "Travel Accessory",
|
329 |
+
129: "Trolley Bag",
|
330 |
+
130: "Trousers",
|
331 |
+
131: "Trunk",
|
332 |
+
132: "Tshirts",
|
333 |
+
133: "Tunics",
|
334 |
+
134: "Umbrellas",
|
335 |
+
135: "Waist Pouch",
|
336 |
+
136: "Waistcoat",
|
337 |
+
137: "Wallets",
|
338 |
+
138: "Watches",
|
339 |
+
139: "Water Bottle",
|
340 |
+
140: "Wristbands"
|
341 |
+
}
|
342 |
+
|
343 |
+
def classify_article_type(image):
|
344 |
+
"""Predicts the article type for a fashion product."""
|
345 |
+
image = Image.fromarray(image).convert("RGB")
|
346 |
+
inputs = processor(images=image, return_tensors="pt")
|
347 |
+
|
348 |
+
with torch.no_grad():
|
349 |
+
outputs = model(**inputs)
|
350 |
+
logits = outputs.logits
|
351 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
352 |
+
|
353 |
+
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
|
354 |
+
return predictions
|
355 |
+
|
356 |
+
# Gradio interface
|
357 |
+
iface = gr.Interface(
|
358 |
+
fn=classify_article_type,
|
359 |
+
inputs=gr.Image(type="numpy"),
|
360 |
+
outputs=gr.Label(label="Article Type Prediction Scores"),
|
361 |
+
title="Fashion-Product-articleType",
|
362 |
+
description="Upload a fashion product image to predict its article type (e.g., T-shirt, Jeans, Handbag, etc)."
|
363 |
+
)
|
364 |
+
|
365 |
+
# Launch the app
|
366 |
+
if __name__ == "__main__":
|
367 |
+
iface.launch()
|
368 |
+
```
|
369 |
+
|
370 |
+
---
|
371 |
+
|
372 |
+
# **Intended Use**
|
373 |
+
|
374 |
+
This model is best suited for:
|
375 |
+
|
376 |
+
- **Fashion E-commerce Tagging & Categorization**
|
377 |
+
- **Automated Product Labeling for Catalogs**
|
378 |
+
- **Enhanced Product Search & Filtering**
|
379 |
+
- **Retail Analytics and Product Type Breakdown**
|