Update README.md
Browse files
README.md
CHANGED
@@ -15,3 +15,111 @@ tags:
|
|
15 |
---
|
16 |
|
17 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |

|
18 |
+
|
19 |
+
|
20 |
+
# **Fire-Risk-Detection**
|
21 |
+
|
22 |
+
> **Fire-Risk-Detection** is a multi-class image classification model based on `google/siglip2-base-patch16-224`, trained to detect **fire risk levels** in geographical or environmental imagery. This model can be used for **wildfire monitoring**, **forest management**, and **environmental safety**.
|
23 |
+
|
24 |
+
---
|
25 |
+
|
26 |
+
```py
|
27 |
+
Classification Report:
|
28 |
+
precision recall f1-score support
|
29 |
+
|
30 |
+
high 0.4430 0.3382 0.3835 6296
|
31 |
+
low 0.3666 0.2296 0.2824 10705
|
32 |
+
moderate 0.3807 0.3757 0.3782 8617
|
33 |
+
non-burnable 0.8429 0.8385 0.8407 17959
|
34 |
+
very_high 0.3920 0.3400 0.3641 3268
|
35 |
+
very_low 0.6068 0.7856 0.6847 21757
|
36 |
+
water 0.9241 0.7744 0.8427 1729
|
37 |
+
|
38 |
+
accuracy 0.6032 70331
|
39 |
+
macro avg 0.5652 0.5260 0.5395 70331
|
40 |
+
weighted avg 0.5860 0.6032 0.5878 70331
|
41 |
+
```
|
42 |
+
|
43 |
+

|
44 |
+
|
45 |
+
## **Label Classes**
|
46 |
+
|
47 |
+
The model distinguishes between the following fire risk levels:
|
48 |
+
|
49 |
+
```
|
50 |
+
0: high
|
51 |
+
1: low
|
52 |
+
2: moderate
|
53 |
+
3: non-burnable
|
54 |
+
4: very_high
|
55 |
+
5: very_low
|
56 |
+
6: water
|
57 |
+
```
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## **Installation**
|
62 |
+
|
63 |
+
```bash
|
64 |
+
pip install transformers torch pillow gradio
|
65 |
+
```
|
66 |
+
|
67 |
+
---
|
68 |
+
|
69 |
+
## **Example Inference Code**
|
70 |
+
|
71 |
+
```python
|
72 |
+
import gradio as gr
|
73 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
74 |
+
from PIL import Image
|
75 |
+
import torch
|
76 |
+
|
77 |
+
# Load model and processor
|
78 |
+
model_name = "prithivMLmods/Fire-Risk-Detection"
|
79 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
80 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
81 |
+
|
82 |
+
# ID to label mapping
|
83 |
+
id2label = {
|
84 |
+
"0": "high",
|
85 |
+
"1": "low",
|
86 |
+
"2": "moderate",
|
87 |
+
"3": "non-burnable",
|
88 |
+
"4": "very_high",
|
89 |
+
"5": "very_low",
|
90 |
+
"6": "water"
|
91 |
+
}
|
92 |
+
|
93 |
+
def detect_fire_risk(image):
|
94 |
+
image = Image.fromarray(image).convert("RGB")
|
95 |
+
inputs = processor(images=image, return_tensors="pt")
|
96 |
+
|
97 |
+
with torch.no_grad():
|
98 |
+
outputs = model(**inputs)
|
99 |
+
logits = outputs.logits
|
100 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
101 |
+
|
102 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
103 |
+
return prediction
|
104 |
+
|
105 |
+
# Gradio Interface
|
106 |
+
iface = gr.Interface(
|
107 |
+
fn=detect_fire_risk,
|
108 |
+
inputs=gr.Image(type="numpy"),
|
109 |
+
outputs=gr.Label(num_top_classes=7, label="Fire Risk Level"),
|
110 |
+
title="Fire-Risk-Detection",
|
111 |
+
description="Upload an image to classify the fire risk level: very_low, low, moderate, high, very_high, non-burnable, or water."
|
112 |
+
)
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
iface.launch()
|
116 |
+
```
|
117 |
+
|
118 |
+
---
|
119 |
+
|
120 |
+
## **Applications**
|
121 |
+
|
122 |
+
* **Wildfire Early Warning Systems**
|
123 |
+
* **Environmental Monitoring**
|
124 |
+
* **Land Use Assessment**
|
125 |
+
* **Disaster Preparedness and Mitigation**
|