prithivMLmods commited on
Commit
4b3122d
·
verified ·
1 Parent(s): f386b29

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -165
README.md CHANGED
@@ -1,199 +1,113 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
 
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
174
 
175
- **BibTeX:**
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
 
 
180
 
181
- [More Information Needed]
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - llama3.2
5
+ - math
6
+ - code
7
+ - text-generation-inference
8
+ license: apache-2.0
9
+ language:
10
+ - en
11
+ base_model:
12
+ - meta-llama/Llama-3.2-3B-Instruct
13
+ pipeline_tag: text-generation
14
  ---
15
+ ![6.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ro8JJK0IQgseIvg2SgMb3.png)
16
 
17
+ # **Flerovium-Llama-3B**
18
 
19
+ > **Flerovium-Llama-3B** is a compact, general-purpose language model based on the powerful **llama 3.2** (llama) architecture. It is fine-tuned for a broad range of tasks including **mathematical reasoning**, **code generation**, and **natural language understanding**, making it a versatile choice for developers, students, and researchers seeking reliable performance in a lightweight model.
20
 
21
+ > \[!note]
22
+ > GGUF: [https://huggingface.co/prithivMLmods/Flerovium-Llama-3B-GGUF](https://huggingface.co/prithivMLmods/Flerovium-Llama-3B-GGUF)
23
 
24
+ ---
25
 
26
+ ## **Key Features**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ 1. **LLaMA 3.2 Backbone**
29
+ Built on **Meta’s LLaMA 3.2 (3B)** architecture, offering state-of-the-art performance in a compact footprint with better instruction-following and multilingual support.
30
 
31
+ 2. **Multi-Task Fine-Tuning**
32
+ Finetuned on a modular and diverse dataset combining math, code, and general-purpose tasks—enabling clear explanations, problem solving, and practical utility.
 
 
 
33
 
34
+ 3. **Strong Mathematical Reasoning**
35
+ Handles algebra, calculus, logic, and numerical problems with step-by-step clarity. Ideal for tutoring and academic use cases.
36
 
37
+ 4. **Coding Capabilities**
38
+ Understands and generates clean, bug-free code in Python, JavaScript, C++, and more. Also excels at debugging, documentation, and logic explanations.
39
 
40
+ 5. **General-Purpose Utility**
41
+ Performs well across everyday reasoning tasks—summarization, Q\&A, content drafting, and structured generation (Markdown, LaTeX, JSON).
42
 
43
+ 6. **Efficient & Deployable**
44
+ With only 3 billion parameters, Flerovium-Llama-3B is resource-efficient and suitable for local deployment, offline tools, and edge AI setups.
45
 
46
+ ---
47
 
48
+ ## **Quickstart with Transformers**
49
 
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
 
53
+ model_name = "prithivMLmods/Flerovium-Llama-3B"
54
 
55
+ model = AutoModelForCausalLM.from_pretrained(
56
+ model_name,
57
+ torch_dtype="auto",
58
+ device_map="auto"
59
+ )
60
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
61
 
62
+ prompt = "Explain how to solve a quadratic equation step-by-step."
63
 
64
+ messages = [
65
+ {"role": "system", "content": "You are a helpful AI assistant for math and coding."},
66
+ {"role": "user", "content": prompt}
67
+ ]
68
 
69
+ text = tokenizer.apply_chat_template(
70
+ messages,
71
+ tokenize=False,
72
+ add_generation_prompt=True
73
+ )
74
 
75
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
76
 
77
+ generated_ids = model.generate(
78
+ **model_inputs,
79
+ max_new_tokens=512
80
+ )
81
+ generated_ids = [
82
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
83
+ ]
84
 
85
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
86
+ print(response)
87
+ ```
88
 
89
+ ---
90
 
91
+ ## **Intended Use**
92
 
93
+ * General-purpose text and reasoning
94
+ * Math tutoring and problem-solving
95
+ * Code generation, review, and debugging
96
+ * Content drafting in Markdown, LaTeX, and JSON
97
+ * Lightweight deployment in educational and developer environments
98
 
99
+ ---
100
 
101
+ ## **Limitations**
102
 
103
+ * Limited context length compared to large models (>7B)
104
+ * May require prompt refinement for very complex code/math problems
105
+ * Not ideal for long-form creative writing or deep conversational tasks
106
+ * Knowledge is limited to training data (no real-time web search)
107
 
108
+ ---
109
 
110
+ ## **References**
111
 
112
+ 1. [LLaMA 3 Technical Report (Meta)](https://ai.meta.com/llama/)
113
+ 2. [YaRN: Efficient Context Window Extension of Large Language Models](https://arxiv.org/pdf/2309.00071)