prithivMLmods commited on
Commit
f064f8c
·
verified ·
1 Parent(s): 14dc28e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md CHANGED
@@ -2,8 +2,28 @@
2
  license: apache-2.0
3
  datasets:
4
  - TheNetherWatcher/DisasterClassification
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
 
 
 
 
 
 
 
 
 
7
  ```py
8
  Classification Report:
9
  precision recall f1-score support
@@ -17,3 +37,82 @@ Flooded Scene 0.9172 0.9458 0.9313 609
17
  ```
18
 
19
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/T-KTVwt2YWoEjg6cB_rgh.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  datasets:
4
  - TheNetherWatcher/DisasterClassification
5
+ language:
6
+ - en
7
+ base_model:
8
+ - google/siglip2-base-patch16-512
9
+ pipeline_tag: image-classification
10
+ library_name: transformers
11
+ tags:
12
+ - SigLIP2
13
+ - Flood-Detection
14
+ - Disaster-Detection
15
+ - climate
16
  ---
17
 
18
+ ![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/kBMZ3tkdVCN8O0z-FkNuO.png)
19
+
20
+ # Flood-Image-Detection
21
+
22
+ > Flood-Image-Detection is a vision-language encoder model fine-tuned from `google/siglip2-base-patch16-512` for **binary image classification**. It is trained to detect whether an image contains a **flooded scene** or **non-flooded** environment. The model uses the `SiglipForImageClassification` architecture.
23
+
24
+ > [!note]
25
+ SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features : https://arxiv.org/pdf/2502.14786
26
+
27
  ```py
28
  Classification Report:
29
  precision recall f1-score support
 
37
  ```
38
 
39
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/T-KTVwt2YWoEjg6cB_rgh.png)
40
+
41
+
42
+ ---
43
+
44
+ ## Label Space: 2 Classes
45
+
46
+ ```
47
+ Class 0: Flooded Scene
48
+ Class 1: Non Flooded
49
+ ```
50
+
51
+ ---
52
+
53
+ ## Install Dependencies
54
+
55
+ ```bash
56
+ pip install -q transformers torch pillow gradio hf_xet
57
+ ```
58
+
59
+ ---
60
+
61
+ ## Inference Code
62
+
63
+ ```python
64
+ import gradio as gr
65
+ from transformers import AutoImageProcessor, SiglipForImageClassification
66
+ from PIL import Image
67
+ import torch
68
+
69
+ # Load model and processor
70
+ model_name = "prithivMLmods/flood-image-detection" # Update with actual model name on Hugging Face
71
+ model = SiglipForImageClassification.from_pretrained(model_name)
72
+ processor = AutoImageProcessor.from_pretrained(model_name)
73
+
74
+ # Updated label mapping
75
+ id2label = {
76
+ "0": "Flooded Scene",
77
+ "1": "Non Flooded"
78
+ }
79
+
80
+ def classify_image(image):
81
+ image = Image.fromarray(image).convert("RGB")
82
+ inputs = processor(images=image, return_tensors="pt")
83
+
84
+ with torch.no_grad():
85
+ outputs = model(**inputs)
86
+ logits = outputs.logits
87
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
88
+
89
+ prediction = {
90
+ id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
91
+ }
92
+
93
+ return prediction
94
+
95
+ # Gradio Interface
96
+ iface = gr.Interface(
97
+ fn=classify_image,
98
+ inputs=gr.Image(type="numpy"),
99
+ outputs=gr.Label(num_top_classes=2, label="Flood Detection"),
100
+ title="Flood-Image-Detection",
101
+ description="Upload an image to detect whether the scene is flooded or not."
102
+ )
103
+
104
+ if __name__ == "__main__":
105
+ iface.launch()
106
+ ```
107
+
108
+ ---
109
+
110
+ ## Intended Use
111
+
112
+ `Flood-Image-Detection` is designed for:
113
+
114
+ * **Disaster Monitoring** – Rapid detection of flood-affected areas from imagery.
115
+ * **Environmental Analysis** – Track flooding patterns across regions using image datasets.
116
+ * **Crisis Response** – Assist emergency services in identifying critical zones.
117
+ * **Surveillance and Safety** – Monitor infrastructure or locations for flood exposure.
118
+ * **Smart Alert Systems** – Integrate with IoT or camera feeds for automated flood alerts.