--- license: apache-2.0 datasets: - TheNetherWatcher/DisasterClassification language: - en base_model: - google/siglip2-base-patch16-512 pipeline_tag: image-classification library_name: transformers tags: - SigLIP2 - Flood-Detection - Disaster-Detection - climate --- ![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/kBMZ3tkdVCN8O0z-FkNuO.png) # Flood-Image-Detection > Flood-Image-Detection is a vision-language encoder model fine-tuned from `google/siglip2-base-patch16-512` for **binary image classification**. It is trained to detect whether an image contains a **flooded scene** or **non-flooded** environment. The model uses the `SiglipForImageClassification` architecture. > [!note] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features : https://arxiv.org/pdf/2502.14786 ```py Classification Report: precision recall f1-score support Flooded Scene 0.9172 0.9458 0.9313 609 Non Flooded 0.9744 0.9603 0.9673 1309 accuracy 0.9557 1918 macro avg 0.9458 0.9530 0.9493 1918 weighted avg 0.9562 0.9557 0.9559 1918 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/T-KTVwt2YWoEjg6cB_rgh.png) --- ## Label Space: 2 Classes ``` Class 0: Flooded Scene Class 1: Non Flooded ``` --- ## Install Dependencies ```bash pip install -q transformers torch pillow gradio hf_xet ``` --- ## Inference Code ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/flood-image-detection" # Update with actual model name on Hugging Face model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Updated label mapping id2label = { "0": "Flooded Scene", "1": "Non Flooded" } def classify_image(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Flood Detection"), title="Flood-Image-Detection", description="Upload an image to detect whether the scene is flooded or not." ) if __name__ == "__main__": iface.launch() ``` --- ## Intended Use `Flood-Image-Detection` is designed for: * **Disaster Monitoring** – Rapid detection of flood-affected areas from imagery. * **Environmental Analysis** – Track flooding patterns across regions using image datasets. * **Crisis Response** – Assist emergency services in identifying critical zones. * **Surveillance and Safety** – Monitor infrastructure or locations for flood exposure. * **Smart Alert Systems** – Integrate with IoT or camera feeds for automated flood alerts.