Update README.md
Browse files
README.md
CHANGED
@@ -16,6 +16,10 @@ tags:
|
|
16 |
- biology
|
17 |
---
|
18 |
|
|
|
|
|
|
|
|
|
19 |
```py
|
20 |
Classification Report:
|
21 |
precision recall f1-score support
|
@@ -125,4 +129,91 @@ grilled_cheese_sandwich 0.8523 0.8773 0.8647 750
|
|
125 |
accuracy 0.8973 75750
|
126 |
macro avg 0.8987 0.8973 0.8977 75750
|
127 |
weighted avg 0.8987 0.8973 0.8977 75750
|
128 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
- biology
|
17 |
---
|
18 |
|
19 |
+
# **Food-101-93M**
|
20 |
+
|
21 |
+
> **Food-101-93M** is a fine-tuned image classification model built on top of **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It is trained to classify food images into one of 101 popular dishes, derived from the [Food-101 dataset](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/).
|
22 |
+
|
23 |
```py
|
24 |
Classification Report:
|
25 |
precision recall f1-score support
|
|
|
129 |
accuracy 0.8973 75750
|
130 |
macro avg 0.8987 0.8973 0.8977 75750
|
131 |
weighted avg 0.8987 0.8973 0.8977 75750
|
132 |
+
```
|
133 |
+
|
134 |
+
The model categorizes images into 101 food classes such as `sushi`, `hamburger`, `waffles`, `pad_thai`, and more.
|
135 |
+
|
136 |
+
---
|
137 |
+
|
138 |
+
# **Run with Transformers 🤗**
|
139 |
+
|
140 |
+
```python
|
141 |
+
!pip install -q transformers torch pillow gradio
|
142 |
+
```
|
143 |
+
|
144 |
+
```python
|
145 |
+
import gradio as gr
|
146 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
147 |
+
from PIL import Image
|
148 |
+
import torch
|
149 |
+
|
150 |
+
# Load model and processor
|
151 |
+
model_name = "prithivMLmods/Food-101-93M"
|
152 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
153 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
154 |
+
|
155 |
+
# Food-101 labels
|
156 |
+
labels = {
|
157 |
+
"0": "apple_pie", "1": "baby_back_ribs", "2": "baklava", "3": "beef_carpaccio", "4": "beef_tartare",
|
158 |
+
"5": "beet_salad", "6": "beignets", "7": "bibimbap", "8": "bread_pudding", "9": "breakfast_burrito",
|
159 |
+
"10": "bruschetta", "11": "caesar_salad", "12": "cannoli", "13": "caprese_salad", "14": "carrot_cake",
|
160 |
+
"15": "ceviche", "16": "cheesecake", "17": "cheese_plate", "18": "chicken_curry", "19": "chicken_quesadilla",
|
161 |
+
"20": "chicken_wings", "21": "chocolate_cake", "22": "chocolate_mousse", "23": "churros", "24": "clam_chowder",
|
162 |
+
"25": "club_sandwich", "26": "crab_cakes", "27": "creme_brulee", "28": "croque_madame", "29": "cup_cakes",
|
163 |
+
"30": "deviled_eggs", "31": "donuts", "32": "dumplings", "33": "edamame", "34": "eggs_benedict",
|
164 |
+
"35": "escargots", "36": "falafel", "37": "filet_mignon", "38": "fish_and_chips", "39": "foie_gras",
|
165 |
+
"40": "french_fries", "41": "french_onion_soup", "42": "french_toast", "43": "fried_calamari", "44": "fried_rice",
|
166 |
+
"45": "frozen_yogurt", "46": "garlic_bread", "47": "gnocchi", "48": "greek_salad", "49": "grilled_cheese_sandwich",
|
167 |
+
"50": "grilled_salmon", "51": "guacamole", "52": "gyoza", "53": "hamburger", "54": "hot_and_sour_soup",
|
168 |
+
"55": "hot_dog", "56": "huevos_rancheros", "57": "hummus", "58": "ice_cream", "59": "lasagna",
|
169 |
+
"60": "lobster_bisque", "61": "lobster_roll_sandwich", "62": "macaroni_and_cheese", "63": "macarons", "64": "miso_soup",
|
170 |
+
"65": "mussels", "66": "nachos", "67": "omelette", "68": "onion_rings", "69": "oysters",
|
171 |
+
"70": "pad_thai", "71": "paella", "72": "pancakes", "73": "panna_cotta", "74": "peking_duck",
|
172 |
+
"75": "pho", "76": "pizza", "77": "pork_chop", "78": "poutine", "79": "prime_rib",
|
173 |
+
"80": "pulled_pork_sandwich", "81": "ramen", "82": "ravioli", "83": "red_velvet_cake", "84": "risotto",
|
174 |
+
"85": "samosa", "86": "sashimi", "87": "scallops", "88": "seaweed_salad", "89": "shrimp_and_grits",
|
175 |
+
"90": "spaghetti_bolognese", "91": "spaghetti_carbonara", "92": "spring_rolls", "93": "steak", "94": "strawberry_shortcake",
|
176 |
+
"95": "sushi", "96": "tacos", "97": "takoyaki", "98": "tiramisu", "99": "tuna_tartare", "100": "waffles"
|
177 |
+
}
|
178 |
+
|
179 |
+
def classify_food(image):
|
180 |
+
"""Predicts the type of food in the image."""
|
181 |
+
image = Image.fromarray(image).convert("RGB")
|
182 |
+
inputs = processor(images=image, return_tensors="pt")
|
183 |
+
|
184 |
+
with torch.no_grad():
|
185 |
+
outputs = model(**inputs)
|
186 |
+
logits = outputs.logits
|
187 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
188 |
+
|
189 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
190 |
+
# Sort by descending probability
|
191 |
+
predictions = dict(sorted(predictions.items(), key=lambda item: item[1], reverse=True)[:5])
|
192 |
+
|
193 |
+
return predictions
|
194 |
+
|
195 |
+
# Gradio Interface
|
196 |
+
iface = gr.Interface(
|
197 |
+
fn=classify_food,
|
198 |
+
inputs=gr.Image(type="numpy"),
|
199 |
+
outputs=gr.Label(num_top_classes=5, label="Top 5 Prediction Scores"),
|
200 |
+
title="Food-101-93M 🍽️",
|
201 |
+
description="Upload an image of food to classify it into one of 101 dish categories based on the Food-101 dataset."
|
202 |
+
)
|
203 |
+
|
204 |
+
# Launch app
|
205 |
+
if __name__ == "__main__":
|
206 |
+
iface.launch()
|
207 |
+
```
|
208 |
+
|
209 |
+
---
|
210 |
+
|
211 |
+
# **Intended Use:**
|
212 |
+
|
213 |
+
The **Food-101-93M** model is intended for:
|
214 |
+
|
215 |
+
- **Recipe Recommendation Engines:** Automatically tagging food images to suggest recipes.
|
216 |
+
- **Food Logging & Calorie Tracking Apps:** Categorizing meals based on photos.
|
217 |
+
- **Smart Kitchens:** Assisting food recognition in smart appliances.
|
218 |
+
- **Restaurant Menu Digitization:** Auto-classifying dishes for visual menus or ordering systems.
|
219 |
+
- **Dataset Labeling:** Enabling automatic annotation of food datasets for training other ML models.
|