prithivMLmods commited on
Commit
dbef7d7
·
verified ·
1 Parent(s): 6f92dc6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -1
README.md CHANGED
@@ -2,8 +2,26 @@
2
  license: apache-2.0
3
  datasets:
4
  - avnishs17/food_not_food
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
 
 
 
 
 
 
 
7
  ```py
8
  Classification Report:
9
  precision recall f1-score support
@@ -16,4 +34,83 @@ Classification Report:
16
  weighted avg 0.8778 0.8774 0.8773 8000
17
  ```
18
 
19
- ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mrelJZ86Pt-NBce0Ty9Re.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  datasets:
4
  - avnishs17/food_not_food
5
+ language:
6
+ - en
7
+ base_model:
8
+ - google/siglip2-base-patch16-224
9
+ pipeline_tag: image-classification
10
+ library_name: transformers
11
+ tags:
12
+ - text-generation-inference
13
+ - food
14
+ - biology
15
+ - Food-or-Not
16
  ---
17
 
18
+ ![f/n.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ZjKzw5Y6XOtCqiHsoNArs.png)
19
+
20
+ # **Food-or-Not-SigLIP2**
21
+
22
+ > **Food-or-Not-SigLIP2** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **binary image classification**. It is trained to distinguish between images of **food** and **non-food** objects using the **SiglipForImageClassification** architecture.
23
+
24
+
25
  ```py
26
  Classification Report:
27
  precision recall f1-score support
 
34
  weighted avg 0.8778 0.8774 0.8773 8000
35
  ```
36
 
37
+ ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mrelJZ86Pt-NBce0Ty9Re.png)
38
+
39
+ ---
40
+
41
+ ## **Label Space: 2 Classes**
42
+
43
+ The model classifies each image into one of the following categories:
44
+
45
+ ```
46
+ Class 0: "food"
47
+ Class 1: "not-food"
48
+ ```
49
+
50
+ ---
51
+
52
+ ## **Install Dependencies**
53
+
54
+ ```bash
55
+ pip install -q transformers torch pillow gradio
56
+ ```
57
+
58
+ ---
59
+
60
+ ## **Inference Code**
61
+
62
+ ```python
63
+ import gradio as gr
64
+ from transformers import AutoImageProcessor, SiglipForImageClassification
65
+ from PIL import Image
66
+ import torch
67
+
68
+ # Load model and processor
69
+ model_name = "prithivMLmods/Food-or-Not-SigLIP2" # Replace with your model path if different
70
+ model = SiglipForImageClassification.from_pretrained(model_name)
71
+ processor = AutoImageProcessor.from_pretrained(model_name)
72
+
73
+ # Label mapping
74
+ id2label = {
75
+ "0": "food",
76
+ "1": "not-food"
77
+ }
78
+
79
+ def classify_food(image):
80
+ image = Image.fromarray(image).convert("RGB")
81
+ inputs = processor(images=image, return_tensors="pt")
82
+
83
+ with torch.no_grad():
84
+ outputs = model(**inputs)
85
+ logits = outputs.logits
86
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
87
+
88
+ prediction = {
89
+ id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
90
+ }
91
+
92
+ return prediction
93
+
94
+ # Gradio Interface
95
+ iface = gr.Interface(
96
+ fn=classify_food,
97
+ inputs=gr.Image(type="numpy"),
98
+ outputs=gr.Label(num_top_classes=2, label="Food Classification"),
99
+ title="Food-or-Not-SigLIP2",
100
+ description="Upload an image to detect if it contains food or not."
101
+ )
102
+
103
+ if __name__ == "__main__":
104
+ iface.launch()
105
+ ```
106
+
107
+ ---
108
+
109
+ ## **Intended Use**
110
+
111
+ **Food-or-Not-SigLIP2** can be used for:
112
+
113
+ * **Dietary Apps** – Automatically classify images for food detection.
114
+ * **Retail & E-commerce** – Filter food vs non-food products visually.
115
+ * **Content Moderation** – Flag content containing food items.
116
+ * **Dataset Curation** – Separate food-related images for training or filtering.