prithivMLmods commited on
Commit
329aaef
·
verified ·
1 Parent(s): 692c57d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md CHANGED
@@ -16,6 +16,12 @@ tags:
16
  - Vision-Encoder
17
  ---
18
 
 
 
 
 
 
 
19
  ```py
20
  Classification Report:
21
  precision recall f1-score support
@@ -46,3 +52,103 @@ two_up_inverted 0.9855 0.9871 0.9863 6967
46
  ```
47
 
48
  ![download (2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BhwQi6V5Qzl3g33OvRsWz.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  - Vision-Encoder
17
  ---
18
 
19
+ ![15.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/JBoqEwRBoOQwik0aRYeGw.png)
20
+
21
+ # **Hand-Gesture-19**
22
+
23
+ > **Hand-Gesture-19** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify hand gesture images into different categories using the **SiglipForImageClassification** architecture.
24
+
25
  ```py
26
  Classification Report:
27
  precision recall f1-score support
 
52
  ```
53
 
54
  ![download (2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BhwQi6V5Qzl3g33OvRsWz.png)
55
+
56
+
57
+ The model categorizes images into nineteen hand gestures:
58
+ - **Class 0:** "call"
59
+ - **Class 1:** "dislike"
60
+ - **Class 2:** "fist"
61
+ - **Class 3:** "four"
62
+ - **Class 4:** "like"
63
+ - **Class 5:** "mute"
64
+ - **Class 6:** "no_gesture"
65
+ - **Class 7:** "ok"
66
+ - **Class 8:** "one"
67
+ - **Class 9:** "palm"
68
+ - **Class 10:** "peace"
69
+ - **Class 11:** "peace_inverted"
70
+ - **Class 12:** "rock"
71
+ - **Class 13:** "stop"
72
+ - **Class 14:** "stop_inverted"
73
+ - **Class 15:** "three"
74
+ - **Class 16:** "three2"
75
+ - **Class 17:** "two_up"
76
+ - **Class 18:** "two_up_inverted"
77
+
78
+ # **Run with Transformers🤗**
79
+
80
+ ```python
81
+ !pip install -q transformers torch pillow gradio
82
+ ```
83
+
84
+ ```python
85
+ import gradio as gr
86
+ from transformers import AutoImageProcessor
87
+ from transformers import SiglipForImageClassification
88
+ from transformers.image_utils import load_image
89
+ from PIL import Image
90
+ import torch
91
+
92
+ # Load model and processor
93
+ model_name = "prithivMLmods/Hand-Gesture-19"
94
+ model = SiglipForImageClassification.from_pretrained(model_name)
95
+ processor = AutoImageProcessor.from_pretrained(model_name)
96
+
97
+ def hand_gesture_classification(image):
98
+ """Predicts the hand gesture category from an image."""
99
+ image = Image.fromarray(image).convert("RGB")
100
+ inputs = processor(images=image, return_tensors="pt")
101
+
102
+ with torch.no_grad():
103
+ outputs = model(**inputs)
104
+ logits = outputs.logits
105
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
106
+
107
+ labels = {
108
+ "0": "call",
109
+ "1": "dislike",
110
+ "2": "fist",
111
+ "3": "four",
112
+ "4": "like",
113
+ "5": "mute",
114
+ "6": "no_gesture",
115
+ "7": "ok",
116
+ "8": "one",
117
+ "9": "palm",
118
+ "10": "peace",
119
+ "11": "peace_inverted",
120
+ "12": "rock",
121
+ "13": "stop",
122
+ "14": "stop_inverted",
123
+ "15": "three",
124
+ "16": "three2",
125
+ "17": "two_up",
126
+ "18": "two_up_inverted"
127
+ }
128
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
129
+
130
+ return predictions
131
+
132
+ # Create Gradio interface
133
+ iface = gr.Interface(
134
+ fn=hand_gesture_classification,
135
+ inputs=gr.Image(type="numpy"),
136
+ outputs=gr.Label(label="Prediction Scores"),
137
+ title="Hand Gesture Classification",
138
+ description="Upload an image to classify the hand gesture."
139
+ )
140
+
141
+ # Launch the app
142
+ if __name__ == "__main__":
143
+ iface.launch()
144
+ ```
145
+
146
+ # **Intended Use:**
147
+
148
+ The **Hand-Gesture-19** model is designed to classify hand gesture images into different categories. Potential use cases include:
149
+
150
+ - **Human-Computer Interaction:** Enabling gesture-based controls for devices.
151
+ - **Sign Language Interpretation:** Assisting in recognizing sign language gestures.
152
+ - **Gaming & VR:** Enhancing immersive experiences with hand gesture recognition.
153
+ - **Robotics:** Facilitating gesture-based robotic control.
154
+ - **Security & Surveillance:** Identifying gestures for access control and safety monitoring.