--- license: apache-2.0 datasets: - prithivMLmods/Human-vs-NonHuman language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - Human - Non-Human - Detection - SigLIP2 - Vision-Encoder --- ![12.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/eIE56Qk5iKuDoZ3rgkKx2.png) # **Human-vs-NonHuman-Detection** > **Human-vs-NonHuman-Detection** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images as either human or non-human using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Human 𖨆 0.9939 0.9735 0.9836 6646 Non Human メ 0.9807 0.9956 0.9881 8989 accuracy 0.9862 15635 macro avg 0.9873 0.9845 0.9858 15635 weighted avg 0.9863 0.9862 0.9862 15635 ``` ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ToGf2iWUKacTCQQn9hRPD.png) The model categorizes images into two classes: - **Class 0:** "Human 𖨆" - **Class 1:** "Non Human メ" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Human-vs-NonHuman-Detection" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def human_detection(image): """Predicts whether the image contains a human or non-human entity.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Human 𖨆", "1": "Non Human メ" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=human_detection, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Human vs Non-Human Detection", description="Upload an image to classify whether it contains a human or non-human entity." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Human-vs-NonHuman-Detection** model is designed to distinguish between human and non-human entities. Potential use cases include: - **Surveillance & Security:** Enhancing monitoring systems to detect human presence. - **Autonomous Systems:** Helping robots and AI systems identify humans. - **Image Filtering:** Automatically categorizing human vs. non-human images. - **Smart Access Control:** Identifying human presence for secure authentication.