prithivMLmods commited on
Commit
159c186
·
verified ·
1 Parent(s): 06db1e1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -1
README.md CHANGED
@@ -46,4 +46,82 @@ library_name: transformers
46
  tags:
47
  - text-generation-inference
48
  - multilingual
49
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  tags:
47
  - text-generation-inference
48
  - multilingual
49
+ ---
50
+
51
+ # **Lambda-Equulei-1.5B-xLingual**
52
+
53
+ > **Lambda-Equulei-1.5B-xLingual** is a **multilingual conversational model** fine-tuned from **Qwen2-1.5B**, specifically designed for **cross-lingual chat and experimental conversations** across **30+ languages**. It brings advanced multilingual understanding and natural dialogue capabilities in a compact size, ideal for international communication tools, language learning platforms, and global conversational assistants.
54
+
55
+ ## **Key Features**
56
+ 1. **Multilingual Conversational Excellence**
57
+ Trained to engage in natural, flowing conversations across 30+ languages, Lambda-Equulei-1.5B-xLingual enables seamless cross-cultural communication and supports diverse linguistic contexts for global applications.
58
+
59
+ 2. **Extensive Language Support (30+ Languages)**
60
+ Capable of understanding, responding, and maintaining context fluently in **over 30 languages** including English, Chinese, Spanish, French, German, Japanese, Korean, Arabic, Hindi, Portuguese, Russian, Italian, Dutch, and many more regional languages.
61
+
62
+ 3. **Compact yet Conversationally Rich**
63
+ While only 1.5B parameters, this model delivers strong performance for natural dialogue, context retention, cultural awareness, and nuanced conversations with minimal resource demands.
64
+
65
+ 4. **Experimental Conversational AI**
66
+ Provides dynamic, context-aware responses that adapt to different conversational styles, cultural nuances, and communication patterns across languages.
67
+
68
+ ## **Quickstart with Transformers**
69
+ ```python
70
+ from transformers import AutoModelForCausalLM, AutoTokenizer
71
+
72
+ model_name = "prithivMLmods/Lambda-Equulei-1.5B-xLingual"
73
+ model = AutoModelForCausalLM.from_pretrained(
74
+ model_name,
75
+ torch_dtype="auto",
76
+ device_map="auto"
77
+ )
78
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
79
+
80
+ prompt = "Hello! Can you help me practice Spanish conversation?"
81
+ messages = [
82
+ {"role": "system", "content": "You are a helpful multilingual assistant capable of conversing naturally in over 30 languages."},
83
+ {"role": "user", "content": prompt}
84
+ ]
85
+
86
+ text = tokenizer.apply_chat_template(
87
+ messages,
88
+ tokenize=False,
89
+ add_generation_prompt=True
90
+ )
91
+
92
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
93
+
94
+ generated_ids = model.generate(
95
+ **model_inputs,
96
+ max_new_tokens=512
97
+ )
98
+
99
+ generated_ids = [
100
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
101
+ ]
102
+
103
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
104
+ ```
105
+
106
+ ## **Intended Use**
107
+ - **Multilingual Chat Applications**: Natural conversation support across 30+ languages for global platforms.
108
+ - **Language Learning Tools**: Interactive practice partners for students learning new languages.
109
+ - **International Customer Support**: Cross-cultural communication for global businesses and services.
110
+ - **Cultural Exchange Platforms**: Facilitating meaningful conversations between speakers of different languages.
111
+ - **Lightweight Multilingual Bots**: Embedded use cases in mobile apps, web platforms, or resource-constrained environments.
112
+
113
+ ## **Limitations**
114
+ 1. **Experimental Nature**:
115
+ As an experimental conversational model, responses may vary in quality and consistency across different languages and contexts.
116
+
117
+ 2. **Language Proficiency Variation**:
118
+ While supporting 30+ languages, proficiency levels may differ between major languages (English, Chinese, Spanish) and less common regional languages.
119
+
120
+ 3. **Parameter Scale Constraints**:
121
+ Though efficient, the 1.5B parameter size may limit performance on highly complex multilingual tasks compared to larger models.
122
+
123
+ 4. **Bias from Base Model**:
124
+ Inherits any biases from Qwen2-1.5B's pretraining. Cultural sensitivity and output validation recommended for sensitive applications.
125
+
126
+ 5. **Context Length Limitations**:
127
+ May struggle with very long conversations or complex multi-turn dialogues requiring extensive context retention.