--- license: apache-2.0 datasets: - anson-huang/mirage-news language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - Fake - Real - SigLIP2 - Mirage --- ![zdfgsdfz.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/jlEXmQDn1tBgBCHjO3ytD.png) # **Mirage-Photo-Classifier** > **Mirage-Photo-Classifier** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a binary image authenticity classification task. It is designed to determine whether an image is real or AI-generated (fake) using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support Real 0.9781 0.9132 0.9446 5000 Fake 0.9186 0.9796 0.9481 5000 accuracy 0.9464 10000 macro avg 0.9484 0.9464 0.9463 10000 weighted avg 0.9484 0.9464 0.9463 10000 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/FwEjat-T3wv1v1Idiu8Qm.png) The model categorizes images into two classes: - **Class 0:** Real - **Class 1:** Fake --- # **Run with Transformers 🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Mirage-Photo-Classifier" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping labels = { "0": "Real", "1": "Fake" } def classify_image_authenticity(image): """Predicts whether the image is real or AI-generated (fake).""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Gradio interface iface = gr.Interface( fn=classify_image_authenticity, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Mirage Photo Classifier", description="Upload an image to determine if it's Real or AI-generated (Fake)." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use** The **Mirage-Photo-Classifier** model is designed to detect whether an image is genuine (photograph) or synthetically generated. Use cases include: - **AI Image Detection:** Identifying AI-generated images in social media, news, or datasets. - **Digital Forensics:** Helping professionals detect image authenticity in investigations. - **Platform Moderation:** Assisting content platforms in labeling generated content. - **Dataset Validation:** Cleaning and verifying training data for other AI models.