--- license: apache-2.0 datasets: - ylecun/mnist language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - Digits - Mnist - SigLIP2 - 0-t0-9 - Number-Classification --- ![fQPjrpOKabPgt_9vCH4Qj.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rB4X4q0YZkX0WJW6fZ83F.png) ![ssdsdsdfsdfcsdfc.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/cyqhEw4goojpJ2shwDdEb.png) # **Mnist-Digits-SigLIP2** > **Mnist-Digits-SigLIP2** is an image classification model fine-tuned from **google/siglip2-base-patch16-224** to classify handwritten digits (0-9) using the **SiglipForImageClassification** architecture. It is trained on the MNIST dataset for accurate digit recognition. ```py Classification Report: precision recall f1-score support 0 0.9988 0.9959 0.9974 5923 1 0.9987 0.9918 0.9952 6742 2 0.9918 0.9943 0.9930 5958 3 0.9975 0.9938 0.9957 6131 4 0.9892 0.9882 0.9887 5842 5 0.9859 0.9937 0.9898 5421 6 0.9936 0.9939 0.9937 5918 7 0.9856 0.9943 0.9899 6265 8 0.9932 0.9921 0.9926 5851 9 0.9926 0.9897 0.9912 5949 accuracy 0.9928 60000 macro avg 0.9927 0.9928 0.9927 60000 weighted avg 0.9928 0.9928 0.9928 60000 ``` ![download (2).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qUaioZfL840_BrRhReCqd.png) ### **Classes:** - **Class 0:** "0" - **Class 1:** "1" - **Class 2:** "2" - **Class 3:** "3" - **Class 4:** "4" - **Class 5:** "5" - **Class 6:** "6" - **Class 7:** "7" - **Class 8:** "8" - **Class 9:** "9" --- # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Mnist-Digits-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def classify_digit(image): """Predicts the digit in the given handwritten digit image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "0", "1": "1", "2": "2", "3": "3", "4": "4", "5": "5", "6": "6", "7": "7", "8": "8", "9": "9" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=classify_digit, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="MNIST Digit Classification 🔢", description="Upload a handwritten digit image (0-9) to recognize it using MNIST-Digits-SigLIP2." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Sample Inference** ![Screenshot 2025-03-28 at 23-23-02 MNIST Digit Classification 🔢.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/o0YinTlr6or3V_wOJMCf3.png) ![Screenshot 2025-03-28 at 23-25-22 MNIST Digit Classification 🔢.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/LP4upkfHfUa3wdRSSS9tp.png) ![Screenshot 2025-03-28 at 23-25-52 MNIST Digit Classification 🔢.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/XJ0AmEg0Com-KN32jtGDu.png) ![Screenshot 2025-03-28 at 23-26-52 MNIST Digit Classification 🔢.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/rboO-rw7BxK7S8vJMF-To.png) # **Intended Use:** The **Mnist-Digits-SigLIP2** model is designed for handwritten digit recognition. Potential applications include: - **Optical Character Recognition (OCR):** Digit recognition for various documents. - **Banking & Finance:** Automated check processing. - **Education & Learning:** AI-powered handwriting assessment. - **Embedded Systems:** Handwriting input in smart devices.