Update README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,25 @@
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- alecsharpie/nailbiting_classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
```py
|
8 |
Classification Report:
|
9 |
precision recall f1-score support
|
@@ -16,4 +33,78 @@ Classification Report:
|
|
16 |
weighted avg 0.8905 0.8876 0.8881 6629
|
17 |
```
|
18 |
|
19 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- alecsharpie/nailbiting_classification
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip2-base-patch16-224
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- Nailbiting
|
13 |
+
- Human
|
14 |
+
- Behaviour
|
15 |
+
- siglip2
|
16 |
---
|
17 |
|
18 |
+

|
19 |
+
|
20 |
+
# **NailbitingNet**
|
21 |
+
|
22 |
+
> **NailbitingNet** is a binary image classification model based on `google/siglip2-base-patch16-224`, designed to detect **nail-biting behavior** in images. Leveraging the **SiglipForImageClassification** architecture, this model is ideal for behavior monitoring, wellness applications, and human activity recognition.
|
23 |
+
|
24 |
```py
|
25 |
Classification Report:
|
26 |
precision recall f1-score support
|
|
|
33 |
weighted avg 0.8905 0.8876 0.8881 6629
|
34 |
```
|
35 |
|
36 |
+

|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## **Label Classes**
|
41 |
+
|
42 |
+
The model distinguishes between:
|
43 |
+
|
44 |
+
```
|
45 |
+
Class 0: "biting" → The person appears to be biting their nails
|
46 |
+
Class 1: "no biting" → No nail-biting behavior detected
|
47 |
+
```
|
48 |
+
|
49 |
+
---
|
50 |
+
|
51 |
+
## **Installation**
|
52 |
+
|
53 |
+
```bash
|
54 |
+
pip install transformers torch pillow gradio
|
55 |
+
```
|
56 |
+
|
57 |
+
---
|
58 |
+
|
59 |
+
## **Example Inference Code**
|
60 |
+
|
61 |
+
```python
|
62 |
+
import gradio as gr
|
63 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
64 |
+
from PIL import Image
|
65 |
+
import torch
|
66 |
+
|
67 |
+
# Load model and processor
|
68 |
+
model_name = "prithivMLmods/NailbitingNet"
|
69 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
70 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
71 |
+
|
72 |
+
# ID to label mapping
|
73 |
+
id2label = {
|
74 |
+
"0": "biting",
|
75 |
+
"1": "no biting"
|
76 |
+
}
|
77 |
+
|
78 |
+
def detect_nailbiting(image):
|
79 |
+
image = Image.fromarray(image).convert("RGB")
|
80 |
+
inputs = processor(images=image, return_tensors="pt")
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
outputs = model(**inputs)
|
84 |
+
logits = outputs.logits
|
85 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
86 |
+
|
87 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
88 |
+
return prediction
|
89 |
+
|
90 |
+
# Gradio Interface
|
91 |
+
iface = gr.Interface(
|
92 |
+
fn=detect_nailbiting,
|
93 |
+
inputs=gr.Image(type="numpy"),
|
94 |
+
outputs=gr.Label(num_top_classes=2, label="Nail-Biting Detection"),
|
95 |
+
title="NailbitingNet",
|
96 |
+
description="Upload an image to classify whether the person is biting their nails or not."
|
97 |
+
)
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
iface.launch()
|
101 |
+
```
|
102 |
+
|
103 |
+
---
|
104 |
+
|
105 |
+
## **Use Cases**
|
106 |
+
|
107 |
+
* **Wellness & Habit Monitoring**
|
108 |
+
* **Behavioral AI Applications**
|
109 |
+
* **Mental Health Tools**
|
110 |
+
* **Dataset Filtering for Behavior Recognition**
|