File size: 4,738 Bytes
df67e43
 
 
 
 
 
 
 
472754e
 
2c5cf63
89f1e32
 
 
 
 
 
 
e24058d
 
 
89f1e32
 
0a9a9ca
63c7239
89f1e32
 
35a247d
89f1e32
35a247d
89f1e32
35a247d
89f1e32
35a247d
89f1e32
35a247d
89f1e32
35a247d
89f1e32
35a247d
89f1e32
35a247d
89f1e32
35a247d
 
 
 
 
e24058d
35a247d
 
 
89f1e32
 
 
3c37802
 
 
89f1e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a247d
89f1e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a247d
89f1e32
35a247d
 
 
 
 
89f1e32
 
 
35a247d
 
 
0a9a9ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: apache-2.0
language:
- en
- zh
- th
base_model:
- Qwen/Qwen2.5-VL-7B-Instruct
tags:
- text-generation-inference
- uncensored
- image-captioning
- vlm
- visual-understanding
- caption
- image-to-text
pipeline_tag: image-text-to-text
library_name: transformers
datasets:
- prithivMLmods/blip3o-caption-mini-arrow
- prithivMLmods/Caption3o-Opt-v2
---

![1.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/BZUG9GehjjprWyoQHTLxk.png)

# **Qwen2.5-VL-7B-Abliterated-Caption-it**

> The **Qwen2.5-VL-7B-Abliterated-Caption-it** model is a fine-tuned version of **Qwen2.5-VL-7B-Instruct**, tailored for **Abliterated Captioning** / **Uncensored Image Captioning**. This variant is designed to generate highly detailed and descriptive captions across a broad range of visual categories, including images with complex, sensitive, or nuanced content—across varying aspect ratios and resolutions.

# Key Highlights

* **Abliterated / Uncensored Captioning**: Fine-tuned to bypass common content filters while preserving factual and descriptive richness across diverse visual categories.

* **High-Fidelity Descriptions**: Generates comprehensive captions for general, artistic, technical, abstract, and low-context images.

* **Robust Across Aspect Ratios**: Capable of accurately captioning images with wide, tall, square, and irregular dimensions.

* **Variational Detail Control**: Produces outputs with both high-level summaries and fine-grained descriptions as needed.

* **Foundation on Qwen2.5-VL Architecture**: Leverages the strengths of the Qwen2.5-VL-7B multimodal model for visual reasoning, comprehension, and instruction-following.

* **Multilingual Output Capability**: Can support multilingual descriptions (English as default), adaptable via prompt engineering.

# Training Details

This model was fine-tuned using the following datasets:

* **[prithivMLmods/blip3o-caption-mini-arrow](https://huggingface.co/datasets/prithivMLmods/blip3o-caption-mini-arrow)**
* **[prithivMLmods/Caption3o-Opt-v2](https://huggingface.co/datasets/prithivMLmods/Caption3o-Opt-v2)**
* **Private/unlisted datasets** curated for uncensored and domain-specific image captioning tasks.

The training objective focused on enhancing performance in unconstrained, descriptive image captioning—especially for edge cases commonly filtered out in standard captioning benchmarks.

# Quick Start with Transformers

> [!note]
Instruction Query: Provide a detailed caption for the image

```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info

model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", torch_dtype="auto", device_map="auto"
)

processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it")

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
            },
            {"type": "text", "text": "Describe this image in detail."},
        ],
    }
]

text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```

# Intended Use

This model is suited for:

* Generating detailed and unfiltered image captions for general-purpose or artistic datasets.
* Content moderation research, red-teaming, and generative safety evaluations.
* Enabling descriptive captioning for visual datasets typically excluded from mainstream models.
* Use in creative applications (e.g., storytelling, art generation) that benefit from rich descriptive captions.
* Captioning for non-standard aspect ratios and stylized visual content.

# Limitations

* May produce explicit, sensitive, or offensive descriptions depending on image content and prompts.
* Not suitable for deployment in production systems requiring content filtering or moderation.
* Can exhibit variability in caption tone or style depending on input prompt phrasing.
* Accuracy for unfamiliar or synthetic visual styles may vary.