--- license: apache-2.0 datasets: - sharmin3/Rice-Leaf-Disease language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - Rice - Classification - SigLIP2 - Type-Count:05 --- ![sdsffsdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/RZ0c2zsJESPWMy4avejVY.png) # **Rice-Leaf-Disease** 🌾 > **Rice-Leaf-Disease** is an image classification model fine-tuned from **google/siglip2-base-patch16-224** for detecting and categorizing diseases in rice leaves. It is built using the **SiglipForImageClassification** architecture and helps in early identification of plant diseases for better crop management. > ```py Classification Report: precision recall f1-score support Bacterialblight 0.8853 0.9596 0.9210 1585 Blast 0.9271 0.8472 0.8853 1440 Brownspot 0.9746 0.9369 0.9554 1600 Healthy 1.0000 1.0000 1.0000 1488 Tungro 0.9589 0.9977 0.9779 1308 accuracy 0.9477 7421 macro avg 0.9492 0.9483 0.9479 7421 weighted avg 0.9486 0.9477 0.9474 7421 ``` ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/iuXCriQpPXJmLeMy--WJr.png) ### **Disease Categories:** - **Class 0:** Bacterial Blight - **Class 1:** Blast - **Class 2:** Brown Spot - **Class 3:** Healthy - **Class 4:** Tungro --- # **Run with Transformers 🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Rice-Leaf-Disease" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def classify_leaf_disease(image): """Predicts the disease type in a rice leaf image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "Bacterial Blight", "1": "Blast", "2": "Brown Spot", "3": "Healthy", "4": "Tungro" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=classify_leaf_disease, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Rice Leaf Disease Classification 🌾", description="Upload an image of a rice leaf to identify if it is healthy or affected by diseases like Bacterial Blight, Blast, Brown Spot, or Tungro." ) # Launch the app if __name__ == "__main__": iface.launch() ``` --- # **Intended Use:** The **Rice-Leaf-Disease** model helps in detecting and classifying rice leaf diseases early, supporting: ✅ **Farmers & Agriculturists:** Quick disease detection for better crop management. ✅ **Agricultural Research:** Monitoring and analyzing plant disease patterns. ✅ **AI & Machine Learning Projects:** Applying AI to real-world agricultural challenges.