Update README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,25 @@
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- vieanh/sports_img_classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
```py
|
8 |
Classification Report:
|
9 |
precision recall f1-score support
|
@@ -23,3 +40,86 @@ weighted avg 0.9611 0.9606 0.9606 6655
|
|
23 |
|
24 |

|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- vieanh/sports_img_classification
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip2-base-patch16-224
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- Sports
|
13 |
+
- Cricket
|
14 |
+
- art
|
15 |
+
- Basketball
|
16 |
---
|
17 |
|
18 |
+

|
19 |
+
|
20 |
+
# **SportsNet-7**
|
21 |
+
|
22 |
+
> **SportsNet-7** is a SigLIP2-based image classification model fine-tuned to identify seven popular sports categories. Built upon the powerful `google/siglip2-base-patch16-224` backbone, this model enables fast and accurate sport-type recognition from images or video frames.
|
23 |
+
|
24 |
```py
|
25 |
Classification Report:
|
26 |
precision recall f1-score support
|
|
|
40 |
|
41 |

|
42 |
|
43 |
+
---
|
44 |
+
|
45 |
+
## **Label Classes**
|
46 |
+
|
47 |
+
The model classifies an input image into one of the following 7 sports:
|
48 |
+
|
49 |
+
```
|
50 |
+
0: badminton
|
51 |
+
1: cricket
|
52 |
+
2: football
|
53 |
+
3: karate
|
54 |
+
4: swimming
|
55 |
+
5: tennis
|
56 |
+
6: wrestling
|
57 |
+
```
|
58 |
+
|
59 |
+
---
|
60 |
+
|
61 |
+
## **Installation**
|
62 |
+
|
63 |
+
```bash
|
64 |
+
pip install transformers torch pillow gradio
|
65 |
+
```
|
66 |
+
|
67 |
+
---
|
68 |
+
|
69 |
+
## **Example Inference Code**
|
70 |
+
|
71 |
+
```python
|
72 |
+
import gradio as gr
|
73 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
74 |
+
from PIL import Image
|
75 |
+
import torch
|
76 |
+
|
77 |
+
# Load model and processor
|
78 |
+
model_name = "prithivMLmods/SportsNet-7"
|
79 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
80 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
81 |
+
|
82 |
+
# Label mapping
|
83 |
+
id2label = {
|
84 |
+
"0": "badminton",
|
85 |
+
"1": "cricket",
|
86 |
+
"2": "football",
|
87 |
+
"3": "karate",
|
88 |
+
"4": "swimming",
|
89 |
+
"5": "tennis",
|
90 |
+
"6": "wrestling"
|
91 |
+
}
|
92 |
+
|
93 |
+
def predict_sport(image):
|
94 |
+
image = Image.fromarray(image).convert("RGB")
|
95 |
+
inputs = processor(images=image, return_tensors="pt")
|
96 |
+
|
97 |
+
with torch.no_grad():
|
98 |
+
outputs = model(**inputs)
|
99 |
+
logits = outputs.logits
|
100 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
101 |
+
|
102 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
103 |
+
return prediction
|
104 |
+
|
105 |
+
# Gradio interface
|
106 |
+
iface = gr.Interface(
|
107 |
+
fn=predict_sport,
|
108 |
+
inputs=gr.Image(type="numpy"),
|
109 |
+
outputs=gr.Label(num_top_classes=3, label="Predicted Sport"),
|
110 |
+
title="SportsNet-7",
|
111 |
+
description="Upload a sports image to classify it as Badminton, Cricket, Football, Karate, Swimming, Tennis, or Wrestling."
|
112 |
+
)
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
iface.launch()
|
116 |
+
```
|
117 |
+
|
118 |
+
---
|
119 |
+
|
120 |
+
## **Use Cases**
|
121 |
+
|
122 |
+
* Sports video tagging
|
123 |
+
* Real-time sport event classification
|
124 |
+
* Dataset enrichment for sports analytics
|
125 |
+
* Educational or training datasets for sports AI
|