prithivMLmods commited on
Commit
700bca5
·
verified ·
1 Parent(s): 5f1f87b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -1
README.md CHANGED
@@ -2,7 +2,30 @@
2
  license: apache-2.0
3
  datasets:
4
  - garythung/trashnet
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  ```py
8
  Classification Report:
@@ -20,4 +43,68 @@ Classification Report:
20
  weighted avg 0.9631 0.9626 0.9626 5054
21
  ```
22
 
23
- ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/gl4jGVduxcQQi2FrqzL1D.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  datasets:
4
  - garythung/trashnet
5
+ language:
6
+ - en
7
+ base_model:
8
+ - google/siglip2-base-patch16-224
9
+ pipeline_tag: image-classification
10
+ library_name: transformers
11
+ tags:
12
+ - Trash
13
+ - Classification
14
+ - Net
15
+ - biology
16
+ - SigLIP2
17
  ---
18
+ # **Trash-Net**
19
+
20
+ > **Trash-Net** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images of waste materials into different categories using the **SiglipForImageClassification** architecture.
21
+
22
+ The model categorizes images into six classes:
23
+ - **Class 0:** "cardboard"
24
+ - **Class 1:** "glass"
25
+ - **Class 2:** "metal"
26
+ - **Class 3:** "paper"
27
+ - **Class 4:** "plastic"
28
+ - **Class 5:** "trash"
29
 
30
  ```py
31
  Classification Report:
 
43
  weighted avg 0.9631 0.9626 0.9626 5054
44
  ```
45
 
46
+ ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/gl4jGVduxcQQi2FrqzL1D.png)
47
+
48
+ # **Run with Transformers🤗**
49
+
50
+ ```python
51
+ !pip install -q transformers torch pillow gradio
52
+ ```
53
+
54
+ ```python
55
+ import gradio as gr
56
+ from transformers import AutoImageProcessor
57
+ from transformers import SiglipForImageClassification
58
+ from transformers.image_utils import load_image
59
+ from PIL import Image
60
+ import torch
61
+
62
+ # Load model and processor
63
+ model_name = "prithivMLmods/Trash-Net"
64
+ model = SiglipForImageClassification.from_pretrained(model_name)
65
+ processor = AutoImageProcessor.from_pretrained(model_name)
66
+
67
+ def trash_classification(image):
68
+ """Predicts the category of waste material in the image."""
69
+ image = Image.fromarray(image).convert("RGB")
70
+ inputs = processor(images=image, return_tensors="pt")
71
+
72
+ with torch.no_grad():
73
+ outputs = model(**inputs)
74
+ logits = outputs.logits
75
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
76
+
77
+ labels = {
78
+ "0": "cardboard",
79
+ "1": "glass",
80
+ "2": "metal",
81
+ "3": "paper",
82
+ "4": "plastic",
83
+ "5": "trash"
84
+ }
85
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
86
+
87
+ return predictions
88
+
89
+ # Create Gradio interface
90
+ iface = gr.Interface(
91
+ fn=trash_classification,
92
+ inputs=gr.Image(type="numpy"),
93
+ outputs=gr.Label(label="Prediction Scores"),
94
+ title="Trash Classification",
95
+ description="Upload an image to classify the type of waste material."
96
+ )
97
+
98
+ # Launch the app
99
+ if __name__ == "__main__":
100
+ iface.launch()
101
+ ```
102
+
103
+ # **Intended Use:**
104
+
105
+ The **Trash-Net** model is designed to classify waste materials into different categories. Potential use cases include:
106
+
107
+ - **Waste Management:** Assisting in automated waste sorting and recycling.
108
+ - **Environmental Monitoring:** Identifying and categorizing waste in public spaces.
109
+ - **Educational Purposes:** Teaching waste classification and sustainability.
110
+ - **Smart Cities:** Enhancing waste disposal systems through AI-driven classification.