prithivMLmods commited on
Commit
431bd6b
·
verified ·
1 Parent(s): c5285d8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -164
README.md CHANGED
@@ -1,199 +1,114 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
 
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
174
 
175
- **BibTeX:**
 
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
 
 
 
 
 
180
 
181
- [More Information Needed]
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-generation-inference
5
+ - code
6
+ - reinforcement-learning
7
+ - math
8
+ license: apache-2.0
9
+ language:
10
+ - en
11
+ base_model:
12
+ - Qwen/Qwen3-1.7B
13
+ pipeline_tag: text-generation
14
  ---
15
 
16
+ ![78.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/l1J-T76goSfuIfoKX_uL5.png)
17
 
18
+ # **Wolf-Rayet-2B-Prime3**
19
 
20
+ > **Wolf-Rayet-2B-Prime3** is a compact, coding-optimized language model built on the **Qwen3 1.7B architecture**, fine-tuned for high-accuracy **code generation**, **debugging**, and **technical reasoning**. With approximately **2 billion effective parameters**, it offers a strong balance between performance and deployability—ideal for developers, educators, and engineers operating in resource-constrained or latency-sensitive environments.
21
 
22
+ > \[!note]
23
+ > GGUF: [https://huggingface.co/prithivMLmods/Wolf-Rayet-2B-Prime3-GGUF](https://huggingface.co/prithivMLmods/Wolf-Rayet-2B-Prime3-GGUF)
24
 
25
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ ## **Key Features**
28
 
29
+ 1. **Qwen3 Architecture Core**
30
+ Based on the modern and efficient **Qwen3 1.7B** transformer backbone, offering improved context handling and token efficiency for both single-turn and multi-turn programming tasks.
31
 
32
+ 2. **Code-First Fine-Tuning**
33
+ Trained extensively on diverse code datasets including Python, JavaScript, C++, and Bash, with auxiliary tuning on software documentation, APIs, and debugging dialogues.
 
 
 
34
 
35
+ 3. **Multi-Step Technical Reasoning**
36
+ Demonstrates the ability to deconstruct complex programming problems, explain logic, refactor code, and correct errors—particularly useful for students, engineers, and coding educators.
37
 
38
+ 4. **Structured Output Proficiency**
39
+ Supports accurate generation of structured formats like JSON, YAML, Markdown, and code blocks—ready to plug into developer tools, notebooks, and documentation pipelines.
40
 
41
+ 5. **Compact Yet Capable**
42
+ With a \~2B parameter scale, it delivers competitive performance without the high resource requirements of larger models, and is easily deployable on modern GPUs or high-end CPUs.
43
 
44
+ 6. **Multilingual Coding Support**
45
+ Capable of generating and understanding code in 10+ programming languages, with a focus on real-world use cases, automation scripts, and algorithmic solutions.
46
 
47
+ ---
48
 
49
+ ## **Quickstart with Transformers**
50
 
51
+ ```python
52
+ from transformers import AutoModelForCausalLM, AutoTokenizer
53
 
54
+ model_name = "prithivMLmods/Wolf-Rayet-2B-Prime3"
55
 
56
+ model = AutoModelForCausalLM.from_pretrained(
57
+ model_name,
58
+ torch_dtype="auto",
59
+ device_map="auto"
60
+ )
61
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
62
 
63
+ prompt = "Write a Python function to check if a number is prime."
64
 
65
+ messages = [
66
+ {"role": "system", "content": "You are a helpful coding assistant."},
67
+ {"role": "user", "content": prompt}
68
+ ]
69
 
70
+ text = tokenizer.apply_chat_template(
71
+ messages,
72
+ tokenize=False,
73
+ add_generation_prompt=True
74
+ )
75
 
76
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
77
 
78
+ generated_ids = model.generate(
79
+ **model_inputs,
80
+ max_new_tokens=512
81
+ )
82
+ generated_ids = [
83
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
84
+ ]
85
 
86
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
87
+ print(response)
88
+ ```
89
 
90
+ ---
91
 
92
+ ## **Intended Use**
93
 
94
+ * Code generation, refactoring, and cross-language translation
95
+ * Programming education and tutoring
96
+ * Technical documentation and boilerplate generation
97
+ * Debugging assistance and bug-fix suggestions
98
+ * Lightweight integration into IDEs, developer tools, and offline environments
99
 
100
+ ---
101
 
102
+ ## **Limitations**
103
 
104
+ * Context length is shorter than that of larger models (>7B)
105
+ * May require prompt engineering for complex or deeply nested code
106
+ * Limited general natural language conversation capabilities
107
+ * Not intended for creative writing or non-technical tasks
108
 
109
+ ---
110
 
111
+ ## **References**
112
 
113
+ 1. [Qwen3 (1.7B) Model Overview](https://huggingface.co/Qwen/Qwen1.5-1.8B)
114
+ 2. [YaRN: Efficient Context Window Extension of Large Language Models](https://arxiv.org/pdf/2309.00071)