Update README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,25 @@
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- Elriggs/imagenet-50-subset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
```py
|
8 |
Classification Report:
|
9 |
precision recall f1-score support
|
@@ -62,4 +79,179 @@ european fire salamander 0.9330 0.9278 0.9304 900
|
|
62 |
accuracy 0.9181 45000
|
63 |
macro avg 0.9186 0.9181 0.9181 45000
|
64 |
weighted avg 0.9186 0.9181 0.9181 45000
|
65 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
- Elriggs/imagenet-50-subset
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip2-base-patch16-224
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- image-net
|
13 |
+
- 50-class
|
14 |
+
- photo
|
15 |
---
|
16 |
|
17 |
+

|
18 |
+
|
19 |
+
# **imagenet-50-subset**
|
20 |
+
|
21 |
+
> **imagenet-50-subset** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **multi-class image classification**. It is trained to classify images into a subset of 50 categories derived from the **ImageNet** dataset using the **SiglipForImageClassification** architecture.
|
22 |
+
|
23 |
+
|
24 |
```py
|
25 |
Classification Report:
|
26 |
precision recall f1-score support
|
|
|
79 |
accuracy 0.9181 45000
|
80 |
macro avg 0.9186 0.9181 0.9181 45000
|
81 |
weighted avg 0.9186 0.9181 0.9181 45000
|
82 |
+
```
|
83 |
+
|
84 |
+
---
|
85 |
+
|
86 |
+
## **Label Space: 50 Classes**
|
87 |
+
|
88 |
+
The model classifies each image into one of the following categories:
|
89 |
+
|
90 |
+
```
|
91 |
+
0: tench
|
92 |
+
1: goldfish
|
93 |
+
2: great white shark
|
94 |
+
3: tiger shark
|
95 |
+
4: hammerhead
|
96 |
+
5: electric ray
|
97 |
+
6: stingray
|
98 |
+
7: cock
|
99 |
+
8: hen
|
100 |
+
9: ostrich
|
101 |
+
10: brambling
|
102 |
+
11: goldfinch
|
103 |
+
12: house finch
|
104 |
+
13: junco
|
105 |
+
14: indigo bunting
|
106 |
+
15: robin
|
107 |
+
16: bulbul
|
108 |
+
17: jay
|
109 |
+
18: magpie
|
110 |
+
19: chickadee
|
111 |
+
20: water ouzel
|
112 |
+
21: kite
|
113 |
+
22: bald eagle
|
114 |
+
23: vulture
|
115 |
+
24: great grey owl
|
116 |
+
25: european fire salamander
|
117 |
+
26: common newt
|
118 |
+
27: eft
|
119 |
+
28: spotted salamander
|
120 |
+
29: axolotl
|
121 |
+
30: bullfrog
|
122 |
+
31: tree frog
|
123 |
+
32: tailed frog
|
124 |
+
33: loggerhead
|
125 |
+
34: leatherback turtle
|
126 |
+
35: mud turtle
|
127 |
+
36: terrapin
|
128 |
+
37: box turtle
|
129 |
+
38: banded gecko
|
130 |
+
39: common iguana
|
131 |
+
40: american chameleon
|
132 |
+
41: whiptail
|
133 |
+
42: agama
|
134 |
+
43: frilled lizard
|
135 |
+
44: alligator lizard
|
136 |
+
45: gila monster
|
137 |
+
46: green lizard
|
138 |
+
47: african chameleon
|
139 |
+
48: komodo dragon
|
140 |
+
49: african crocodile
|
141 |
+
```
|
142 |
+
|
143 |
+
---
|
144 |
+
|
145 |
+
## **Install Dependencies**
|
146 |
+
|
147 |
+
```bash
|
148 |
+
pip install -q transformers torch pillow gradio
|
149 |
+
```
|
150 |
+
|
151 |
+
---
|
152 |
+
|
153 |
+
## **Inference Code**
|
154 |
+
|
155 |
+
```python
|
156 |
+
import gradio as gr
|
157 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
158 |
+
from PIL import Image
|
159 |
+
import torch
|
160 |
+
|
161 |
+
# Load model and processor
|
162 |
+
model_name = "prithivMLmods/imagenet-50-subset" # Replace if different
|
163 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
164 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
165 |
+
|
166 |
+
# Label mapping
|
167 |
+
id2label = {
|
168 |
+
"0": "tench",
|
169 |
+
"1": "goldfish",
|
170 |
+
"2": "great white shark",
|
171 |
+
"3": "tiger shark",
|
172 |
+
"4": "hammerhead",
|
173 |
+
"5": "electric ray",
|
174 |
+
"6": "stingray",
|
175 |
+
"7": "cock",
|
176 |
+
"8": "hen",
|
177 |
+
"9": "ostrich",
|
178 |
+
"10": "brambling",
|
179 |
+
"11": "goldfinch",
|
180 |
+
"12": "house finch",
|
181 |
+
"13": "junco",
|
182 |
+
"14": "indigo bunting",
|
183 |
+
"15": "robin",
|
184 |
+
"16": "bulbul",
|
185 |
+
"17": "jay",
|
186 |
+
"18": "magpie",
|
187 |
+
"19": "chickadee",
|
188 |
+
"20": "water ouzel",
|
189 |
+
"21": "kite",
|
190 |
+
"22": "bald eagle",
|
191 |
+
"23": "vulture",
|
192 |
+
"24": "great grey owl",
|
193 |
+
"25": "european fire salamander",
|
194 |
+
"26": "common newt",
|
195 |
+
"27": "eft",
|
196 |
+
"28": "spotted salamander",
|
197 |
+
"29": "axolotl",
|
198 |
+
"30": "bullfrog",
|
199 |
+
"31": "tree frog",
|
200 |
+
"32": "tailed frog",
|
201 |
+
"33": "loggerhead",
|
202 |
+
"34": "leatherback turtle",
|
203 |
+
"35": "mud turtle",
|
204 |
+
"36": "terrapin",
|
205 |
+
"37": "box turtle",
|
206 |
+
"38": "banded gecko",
|
207 |
+
"39": "common iguana",
|
208 |
+
"40": "american chameleon",
|
209 |
+
"41": "whiptail",
|
210 |
+
"42": "agama",
|
211 |
+
"43": "frilled lizard",
|
212 |
+
"44": "alligator lizard",
|
213 |
+
"45": "gila monster",
|
214 |
+
"46": "green lizard",
|
215 |
+
"47": "african chameleon",
|
216 |
+
"48": "komodo dragon",
|
217 |
+
"49": "african crocodile"
|
218 |
+
}
|
219 |
+
|
220 |
+
def classify_imagenet_50(image):
|
221 |
+
image = Image.fromarray(image).convert("RGB")
|
222 |
+
inputs = processor(images=image, return_tensors="pt")
|
223 |
+
|
224 |
+
with torch.no_grad():
|
225 |
+
outputs = model(**inputs)
|
226 |
+
logits = outputs.logits
|
227 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
228 |
+
|
229 |
+
prediction = {
|
230 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
231 |
+
}
|
232 |
+
|
233 |
+
return prediction
|
234 |
+
|
235 |
+
# Gradio Interface
|
236 |
+
iface = gr.Interface(
|
237 |
+
fn=classify_imagenet_50,
|
238 |
+
inputs=gr.Image(type="numpy"),
|
239 |
+
outputs=gr.Label(num_top_classes=5, label="ImageNet-50 Classification"),
|
240 |
+
title="imagenet-50-subset",
|
241 |
+
description="Upload an image to classify it into one of 50 selected ImageNet categories."
|
242 |
+
)
|
243 |
+
|
244 |
+
if __name__ == "__main__":
|
245 |
+
iface.launch()
|
246 |
+
```
|
247 |
+
|
248 |
+
---
|
249 |
+
|
250 |
+
## **Intended Use**
|
251 |
+
|
252 |
+
**imagenet-50-subset** can be used for:
|
253 |
+
|
254 |
+
* **Benchmarking Lightweight Vision Models** – Quick testing on a meaningful subset of ImageNet classes.
|
255 |
+
* **Educational Demos** – Teaching about classification tasks with a simpler label space.
|
256 |
+
* **Prototype Deployment** – Use in applications where full ImageNet coverage is unnecessary.
|
257 |
+
* **Dataset Analysis** – Classification-based filtering of visual content into known object classes.
|