Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- project-droid/DroidCollection
|
5 |
+
base_model:
|
6 |
+
- answerdotai/ModernBERT-base
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
---
|
9 |
|
10 |
+
# DroidDetect-Base
|
11 |
+
|
12 |
+
This is a text classification model based on `answerdotai/ModernBERT-base`, fine-tuned to distinguish between **human-written**, **AI-refined** and **AI-generated** code.
|
13 |
+
|
14 |
+
The model was trained on the `DroidCollection` dataset. It's designed as a **ternary classifier** to address the core task of AI code detection.
|
15 |
+
|
16 |
+
A key feature of this model is its training objective, which combines standard **Cross-Entropy Loss** with a **Batch-Hard Triplet Loss**. This contrastive loss component encourages the model to learn more discriminative embeddings by pushing representations of human vs. machine code further apart in the vector space.
|
17 |
+
|
18 |
+
***
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
* **Base Model:** `answerdotai/ModernBERT-base`
|
23 |
+
* **Loss Function:** `Total Loss = CrossEntropyLoss + 0.1 * TripletLoss`
|
24 |
+
* **Dataset:** Filtered training set of the [DroidCollection](https://huggingface.co/datasets/project-droid/DroidCollection).
|
25 |
+
|
26 |
+
#### Label Mapping
|
27 |
+
|
28 |
+
The model predicts one of 3 classes. The mapping from ID to label is as follows:
|
29 |
+
|
30 |
+
```json
|
31 |
+
{
|
32 |
+
"0": "HUMAN_GENERATED",
|
33 |
+
"1": "MACHINE_GENERATED",
|
34 |
+
"2": "MACHINE_REFINED",
|
35 |
+
}
|
36 |
+
```
|
37 |
+
|
38 |
+
## Model Code
|
39 |
+
|
40 |
+
The following code can be used for reproducibility:
|
41 |
+
|
42 |
+
```python
|
43 |
+
TEXT_EMBEDDING_DIM = 768
|
44 |
+
|
45 |
+
|
46 |
+
class TLModel(nn.Module):
|
47 |
+
def __init__(self, text_encoder, projection_dim=128, num_classes=NUM_CLASSES, class_weights=None):
|
48 |
+
super().__init__()
|
49 |
+
self.text_encoder = text_encoder
|
50 |
+
self.num_classes = num_classes
|
51 |
+
text_output_dim = TEXT_EMBEDDING_DIM
|
52 |
+
self.additional_loss = losses.BatchHardSoftMarginTripletLoss(self.text_encoder)
|
53 |
+
|
54 |
+
self.text_projection = nn.Linear(text_output_dim, projection_dim)
|
55 |
+
self.classifier = nn.Linear(projection_dim, num_classes)
|
56 |
+
self.class_weights = class_weights
|
57 |
+
|
58 |
+
def forward(self, labels=None, input_ids=None, attention_mask=None):
|
59 |
+
actual_labels = labels
|
60 |
+
sentence_embeddings = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
|
61 |
+
sentence_embeddings = sentence_embeddings.mean(dim=1)
|
62 |
+
projected_text = F.relu(self.text_projection(sentence_embeddings))
|
63 |
+
logits = self.classifier(projected_text)
|
64 |
+
loss = None
|
65 |
+
cross_entropy_loss = None
|
66 |
+
contrastive_loss = None
|
67 |
+
|
68 |
+
if actual_labels is not None:
|
69 |
+
loss_fct_ce = nn.CrossEntropyLoss(weight=self.class_weights.to(logits.device) if self.class_weights is not None else None)
|
70 |
+
cross_entropy_loss = loss_fct_ce(logits.view(-1, self.num_classes), actual_labels.view(-1))
|
71 |
+
contrastive_loss = self.additional_loss.batch_hard_triplet_loss(embeddings=projected_text, labels=actual_labels)
|
72 |
+
lambda_contrast = 0.1
|
73 |
+
loss = cross_entropy_loss + lambda_contrast * contrastive_loss
|
74 |
+
|
75 |
+
|
76 |
+
output = {"logits": logits, "fused_embedding": projected_text}
|
77 |
+
if loss is not None:
|
78 |
+
output["loss"] = loss
|
79 |
+
if cross_entropy_loss is not None:
|
80 |
+
output["cross_entropy_loss"] = cross_entropy_loss
|
81 |
+
if contrastive_loss is not None:
|
82 |
+
output["contrastive_loss"] = contrastive_loss
|
83 |
+
|
84 |
+
return output
|
85 |
+
```
|