File size: 6,479 Bytes
4522849 e3c6df5 e69747c e3c6df5 2913be0 e3c6df5 aa55120 3bbf249 4522849 e3c6df5 651d66f e3c6df5 b9d9e1d e3c6df5 2a49114 e3c6df5 651d66f 5c145f9 6a5a7ed 651d66f d79d134 b780397 2a49114 e3c6df5 b9d9e1d d79d134 b9d9e1d d79d134 b9d9e1d 62c40e0 7705de4 5c145f9 7705de4 5c145f9 7705de4 5c145f9 651d66f 7705de4 e3c6df5 7930598 5c145f9 0fd399b 62c40e0 7930598 62c40e0 7930598 62c40e0 5c145f9 7930598 d927332 651d66f d927332 e96083b 7930598 e96083b 7930598 d927332 fea5c8c 7705de4 d927332 c870205 d927332 2a49114 e3c6df5 1517df0 db09460 917b3c1 e43747c f33f2e7 db09460 2a49114 e3c6df5 3e00824 917b3c1 5d63ecb d8a4b8f 5d63ecb e3c6df5 1b57147 d8a4b8f e3c6df5 1b57147 6a5a7ed e3c6df5 2a49114 e3c6df5 8d445aa e3c6df5 88a3509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
language:
- ca
tags:
- matcha-tts
- acoustic modelling
- speech
- multispeaker
pipeline_tag: text-to-speech
datasets:
- projecte-aina/festcat_trimmed_denoised
- projecte-aina/openslr-slr69-ca-trimmed-denoised
license: apache-2.0
---
# 🍵 Matxa-TTS Catalan Multispeaker
## Table of Contents
<details>
<summary>Click to expand</summary>
- [Model description](#model-description)
- [Intended uses and limitations](#intended-uses-and-limitations)
- [How to use](#how-to-use)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation](#citation)
- [Additional information](#additional-information)
</details>
## Model Description
🍵 **Matxa-TTS** is based on **Matcha-TTS** that is an encoder-decoder architecture designed for fast acoustic modelling in TTS.
The encoder part is based on a text encoder and a phoneme duration prediction that together predict averaged acoustic features.
And the decoder has essentially a U-Net backbone inspired by [Grad-TTS](https://arxiv.org/pdf/2105.06337.pdf), which is based on the Transformer architecture.
In the latter, by replacing 2D CNNs by 1D CNNs, a large reduction in memory consumption and fast synthesis is achieved.
**Matxa-TTS** is a non-autorregressive model trained with optimal-transport conditional flow matching (OT-CFM).
This yields an ODE-based decoder capable of generating high output quality in fewer synthesis steps than models trained using score matching.
## Intended Uses and Limitations
This model is intended to serve as an acoustic feature generator for multispeaker text-to-speech systems for the Catalan language.
It has been finetuned using a Catalan phonemizer, therefore if the model is used for other languages it may will not produce intelligible samples after mapping
its output into a speech waveform.
The quality of the samples can vary depending on the speaker.
This may be due to the sensitivity of the model in learning specific frequencies and also due to the quality of samples for each speaker.
## How to Get Started with the Model
### Installation
This model has been trained using the espeak-ng open source text-to-speech software.
The espeak-ng containing the Catalan phonemizer can be found [here](https://github.com/projecte-aina/espeak-ng)
Create a virtual environment:
```bash
python -m venv /path/to/venv
```
```bash
source /path/to/venv/bin/activate
```
For training and inferencing with Catalan Matxa-TTS you need to compile the provided espeak-ng with the Catalan phonemizer:
```bash
git clone https://github.com/projecte-aina/espeak-ng.git
export PYTHON=/path/to/env/<env_name>/bin/python
cd /path/to/espeak-ng
./autogen.sh
./configure --prefix=/path/to/espeak-ng
make
make install
pip cache purge
pip install mecab-python3
pip install unidic-lite
```
Clone the repository:
```bash
git clone -b dev-cat https://github.com/langtech-bsc/Matcha-TTS.git
cd Matcha-TTS
```
Install the package from source:
```bash
pip install -e .
```
### For Inference
#### PyTorch
Speech end-to-end inference can be done together with **Catalan Matxa-TTS**.
Both models (Catalan Matxa-TTS and alVoCat) are loaded remotely from the HF hub.
First, export the following environment variables to include the installed espeak-ng version:
```bash
export PYTHON=/path/to/your/venv/bin/python
export ESPEAK_DATA_PATH=/path/to/espeak-ng/espeak-ng-data
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/espeak-ng/lib
export PATH="/path/to/espeak-ng/bin:$PATH"
```
Then you can run the inference script:
```bash
cd Matcha-TTS
python3 matcha_vocos_inference.py --output_path=/output/path --text_input="Bon dia Manel, avui anem a la muntanya."
```
You can also modify the length scale (speech rate) and the temperature of the generated sample:
```bash
python3 matcha_vocos_inference.py --output_path=/output/path --text_input="Bon dia Manel, avui anem a la muntanya." --length_scale=0.8 --temperature=0.7
```
#### ONNX
We also release a ONNX version of the model
### For Training
The entire checkpoint is also released to continue training or finetuning.
See the [repo instructions](https://github.com/langtech-bsc/Matcha-TTS/tree/dev-cat)
## Training Details
### Training data
The model was trained on 2 **Catalan** speech datasets
| Dataset | Language | Hours | Num. Speakers |
|---------------------|----------|---------|-----------------|
| [Festcat](https://huggingface.co/datasets/projecte-aina/festcat_trimmed_denoised) | ca | 22 | 11 |
| [OpenSLR69](https://huggingface.co/datasets/projecte-aina/openslr-slr69-ca-trimmed-denoised) | ca | 5 | 36 |
### Training procedure
***Catalan Matcha-TTS*** was finetuned from the English multispeaker checkpoint,
which was trained with the [VCTK dataset](https://huggingface.co/datasets/vctk) and provided by the model authors.
The embedding layer was initialized with the number of catalan speakers (47) and the original hyperparameters were kept.
### Training Hyperparameters
* batch size: 32 (x2 GPUs)
* learning rate: 1e-4
* number of speakers: 47
* n_fft: 1024
* n_feats: 80
* sample_rate: 22050
* hop_length: 256
* win_length: 1024
* f_min: 0
* f_max: 8000
* data_statistics:
* mel_mean: -6578195
* mel_std: 2.538758
* number of samples: 13340
## Evaluation
Validation values obtained from tensorboard from epoch 2399*:
* val_dur_loss_epoch: 0.38
* val_prior_loss_epoch: 0.97
* val_diff_loss_epoch: 2.195
(Note that the finetuning started from epoch 1864, as previous ones were trained with VCTK dataset)
## Citation
If this code contributes to your research, please cite the work:
```
@misc{mehta2024matchatts,
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
author={Shivam Mehta and Ruibo Tu and Jonas Beskow and Éva Székely and Gustav Eje Henter},
year={2024},
eprint={2309.03199},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
```
## Additional Information
### Author
The Language Technologies Unit from Barcelona Supercomputing Center.
### Contact
For further information, please send an email to <[email protected]>.
### Copyright
Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center.
### License
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
### Funding
This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/). |