--- library_name: peft base_model: EleutherAI/pythia-14m tags: - axolotl - generated_from_trainer model-index: - name: ec40bd82-1b1c-4d33-8611-034bec6622e1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-14m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7cecb5f0cbdfe3e6_train_data.json ds_type: json format: custom path: /workspace/input_data/7cecb5f0cbdfe3e6_train_data.json type: field_input: product_description field_instruction: query field_output: product_title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: prxy5605/ec40bd82-1b1c-4d33-8611-034bec6622e1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 400 micro_batch_size: 2 mlflow_experiment_name: /tmp/7cecb5f0cbdfe3e6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9c40171a-a397-4067-8fba-d0d97f9c3fb5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9c40171a-a397-4067-8fba-d0d97f9c3fb5 warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ```

# ec40bd82-1b1c-4d33-8611-034bec6622e1 This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.1609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 8.6985 | | 36.2246 | 0.0259 | 100 | 8.2586 | | 37.241 | 0.0519 | 200 | 8.0567 | | 36.0005 | 0.0778 | 300 | 8.1648 | | 36.4537 | 0.1037 | 400 | 8.1609 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1