pvaluedotone commited on
Commit
d4678b3
·
verified ·
1 Parent(s): ddd1564

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -21
README.md CHANGED
@@ -1,4 +1,3 @@
1
-
2
  ---
3
  library_name: transformers
4
  tags:
@@ -6,32 +5,60 @@ tags:
6
  - text-classification
7
  base_model: google/bigbird-roberta-base
8
  widget:
9
- - text: "I love AutoTrain"
 
 
 
 
 
 
 
10
  ---
11
 
12
- # Model Trained Using AutoTrain
13
-
14
- - Problem type: Text Classification
15
-
16
- ## Validation Metrics
17
- loss: 1.6760838031768799
18
-
19
- f1_macro: 0.27337963763262785
20
-
21
- f1_micro: 0.3093385214007782
22
-
23
- f1_weighted: 0.2814372687206247
24
 
25
- precision_macro: 0.282150640368379
 
 
26
 
27
- precision_micro: 0.3093385214007782
 
 
 
 
 
 
 
28
 
29
- precision_weighted: 0.2911286647426314
 
 
 
30
 
31
- recall_macro: 0.30072312612988455
 
 
 
32
 
33
- recall_micro: 0.3093385214007782
 
 
 
34
 
35
- recall_weighted: 0.3093385214007782
 
 
36
 
37
- accuracy: 0.3093385214007782
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
  tags:
 
5
  - text-classification
6
  base_model: google/bigbird-roberta-base
7
  widget:
8
+ - text: I love AutoTrain
9
+ license: mit
10
+ language:
11
+ - en
12
+ metrics:
13
+ - accuracy
14
+ - bertscore
15
+ pipeline_tag: text-classification
16
  ---
17
 
18
+ # 🛫 Big Bird Flight
19
+ Big Bird Flight 2 is a fine-tuned version of Google’s BigBird model, optimised for long-text sentiment analysis. Big Bird Flight 2 is an improved version of Big Bird Flight 1. The model records a 16% improved accuracy over its predecessor. Both models was trained on 2,598 flight review texts, each annotated with a 10-point ordinal sentiment rating ranging from 1 (extremely negative) to 10 (extremely positive).
 
 
 
 
 
 
 
 
 
 
20
 
21
+ Just like its predecessor, Big Bird 2 captures emotional gradients in text, offering richer sentiment analysis than conventional binary classification (e.g., positive vs. negative). This makes it particularly useful for applications requiring fine-grained sentiment understanding from lengthy or detailed customer feedback.
22
+ - Use case: text classification
23
+ - Sentiment class: 1 (extremely negative) to 10 (extremely positive)
24
 
25
+ # 📘 Model details
26
+ - Base model: google/bigbird-roberta-base
27
+ - Architecture: BigBirdForSequenceClassification
28
+ - Hidden size: 768
29
+ - Layers: 12 transformer blocks
30
+ - Attention type: block-sparse
31
+ - Max sequence length: 4096 tokens
32
+ - Number of classes: 10 [ratings from 1 to 10 (extremely negative/extremely positive)]
33
 
34
+ # 🧠 Training Summary
35
+ - Dataset: 2,598 airline passenger reviews.
36
+ - Labels: ordinal scale from 1 (extremely negative) to 10 (extremely positive).
37
+ - Loss function: cross-entropy (classification setup).
38
 
39
+ # 🛠 Tokenizer
40
+ - Based on SentencePiece Unigram model.
41
+ - Uses a Metaspace tokenizer for subword splitting.
42
+ - Max tokenised input length was set to 1024 tokens during preprocessing.
43
 
44
+ # 📌 Use cases
45
+ - Analyse detailed customer reviews of flight experience.
46
+ - Replace coarse binary sentiment models with ordinal sentiment scales.
47
+ - Experiment with ordinal regression techniques in NLP.
48
 
49
+ # 📚 Citation
50
+ If you're using this model in your research or applications, appreciate if you could buy me a coffe through this citation.
51
+ Mat Roni, S. (2025). Big Bird Flight 2 for ordinal sentiment analysis [software]. Hugging Face. https://huggingface.co/pvaluedotone/bigbird-flight-2
52
 
53
+ ## Validation metrics
54
+ - loss: 1.6761
55
+ - f1_macro: 0.2734
56
+ - f1_micro: 0.3093
57
+ - f1_weighted: 0.2814
58
+ - precision_macro: 0.2822
59
+ - precision_micro: 0.3093
60
+ - precision_weighted: 0.2911
61
+ - recall_macro: 0.3007
62
+ - recall_micro: 0.3093
63
+ - recall_weighted: 0.3093
64
+ - accuracy: 0.3093