Upload model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- security
|
| 5 |
+
- cybersecurity
|
| 6 |
+
- wazuh
|
| 7 |
+
- transformer
|
| 8 |
+
- roberta
|
| 9 |
+
- secroberta
|
| 10 |
+
- log-analysis
|
| 11 |
+
- anomaly-detection
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
+
datasets:
|
| 15 |
+
- wazuh-assist-dataset
|
| 16 |
+
metrics:
|
| 17 |
+
- accuracy
|
| 18 |
+
- precision
|
| 19 |
+
- recall
|
| 20 |
+
- f1
|
| 21 |
+
library_name: transformers
|
| 22 |
+
pipeline_tag: text-classification
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
# Wazuh SecRoBERTa Security Log Classifier
|
| 26 |
+
|
| 27 |
+
## Model Description
|
| 28 |
+
|
| 29 |
+
This is a fine-tuned SecRoBERTa model for classifying Wazuh security logs into three categories:
|
| 30 |
+
- **Benign (0)**: Normal, safe activities
|
| 31 |
+
- **Suspicious (1)**: Potentially concerning activities that require monitoring
|
| 32 |
+
- **Malicious (2)**: Confirmed threats requiring immediate action
|
| 33 |
+
|
| 34 |
+
The model is based on [jackaduma/SecRoBERTa](https://huggingface.co/jackaduma/SecRoBERTa) and fine-tuned using LoRA (Low-Rank Adaptation) for efficient parameter updates.
|
| 35 |
+
|
| 36 |
+
## Model Architecture
|
| 37 |
+
|
| 38 |
+
- **Base Model**: SecRoBERTa (Security-focused RoBERTa)
|
| 39 |
+
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
| 40 |
+
- **Classification Head**: 3-class classifier
|
| 41 |
+
- **Additional Features**: 136-dimensional feature vector for log metadata
|
| 42 |
+
- **Max Sequence Length**: 512 tokens
|
| 43 |
+
|
| 44 |
+
## Training Details
|
| 45 |
+
|
| 46 |
+
- **Training Framework**: PyTorch + HuggingFace Transformers + PEFT
|
| 47 |
+
- **Loss Function**: Focal Loss (for handling class imbalance)
|
| 48 |
+
- **Optimization**: AdamW with learning rate scheduling
|
| 49 |
+
- **Data**: Wazuh security logs
|
| 50 |
+
|
| 51 |
+
## Usage
|
| 52 |
+
|
| 53 |
+
### Using transformers library:
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 57 |
+
import torch
|
| 58 |
+
|
| 59 |
+
# Load model and tokenizer
|
| 60 |
+
model_name = "pyToshka/wazuh-assist"
|
| 61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 62 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 63 |
+
|
| 64 |
+
# Prepare input
|
| 65 |
+
text = "Failed login attempt from IP 192.168.1.100"
|
| 66 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 67 |
+
|
| 68 |
+
# Make prediction
|
| 69 |
+
with torch.no_grad():
|
| 70 |
+
outputs = model(**inputs)
|
| 71 |
+
logits = outputs.logits
|
| 72 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 73 |
+
|
| 74 |
+
# Class mapping
|
| 75 |
+
class_names = ["benign", "suspicious", "malicious"]
|
| 76 |
+
prediction = class_names[predicted_class]
|
| 77 |
+
print(f"Prediction: {prediction}")
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Using the project's custom class:
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
from src.models.secroberta import WazuhSecRoBERTa
|
| 84 |
+
|
| 85 |
+
# Load model
|
| 86 |
+
model = WazuhSecRoBERTa.load_model("pyToshka/wazuh-assist")
|
| 87 |
+
|
| 88 |
+
# Make prediction
|
| 89 |
+
log_text = "Failed login attempt from IP 192.168.1.100"
|
| 90 |
+
prediction, confidence = model.predict(log_text)
|
| 91 |
+
print(f"Prediction: {prediction} (confidence: {confidence:.3f})")
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
## Performance
|
| 95 |
+
|
| 96 |
+
The model achieves strong performance on Wazuh log classification:
|
| 97 |
+
- High precision for malicious activity detection
|
| 98 |
+
- Good recall for suspicious activity monitoring
|
| 99 |
+
- Balanced accuracy across all three classes
|
| 100 |
+
|
| 101 |
+
## Deployment
|
| 102 |
+
|
| 103 |
+
This model can be deployed using:
|
| 104 |
+
- **ONNX Runtime**: For production inference
|
| 105 |
+
- **FastAPI**: REST API server included in the project
|
| 106 |
+
- **Docker**: Containerized deployment available
|
| 107 |
+
|
| 108 |
+
## Citation
|
| 109 |
+
|
| 110 |
+
```bibtex
|
| 111 |
+
@misc{wazuh-assist-2025,
|
| 112 |
+
title={Wazuh SecRoBERTa Security Log Classifier},
|
| 113 |
+
author={Your Organization},
|
| 114 |
+
year={2024},
|
| 115 |
+
howpublished={\url{https://huggingface.co/pyToshka/wazuh-assist}},
|
| 116 |
+
}
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
## License
|
| 120 |
+
|
| 121 |
+
BSD 3-Clause License
|
| 122 |
+
|
| 123 |
+
|