wenruifan's picture
Upload 115 files
a256709 verified
""" AdaHessian Optimizer
Lifted from https://github.com/davda54/ada-hessian/blob/master/ada_hessian.py
Originally licensed MIT, Copyright 2020, David Samuel
"""
import torch
class Adahessian(torch.optim.Optimizer):
"""
Implements the AdaHessian algorithm from "ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning"
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional): learning rate (default: 0.1)
betas ((float, float), optional): coefficients used for computing running averages of gradient and the
squared hessian trace (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.0)
hessian_power (float, optional): exponent of the hessian trace (default: 1.0)
update_each (int, optional): compute the hessian trace approximation only after *this* number of steps
(to save time) (default: 1)
n_samples (int, optional): how many times to sample `z` for the approximation of the hessian trace (default: 1)
"""
def __init__(
self,
params,
lr=0.1,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
hessian_power=1.0,
update_each=1,
n_samples=1,
avg_conv_kernel=False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= hessian_power <= 1.0:
raise ValueError(f"Invalid Hessian power value: {hessian_power}")
self.n_samples = n_samples
self.update_each = update_each
self.avg_conv_kernel = avg_conv_kernel
# use a separate generator that deterministically generates the same `z`s across all GPUs in case of distributed training
self.seed = 2147483647
self.generator = torch.Generator().manual_seed(self.seed)
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
hessian_power=hessian_power,
)
super(Adahessian, self).__init__(params, defaults)
for p in self.get_params():
p.hess = 0.0
self.state[p]["hessian step"] = 0
@property
def is_second_order(self):
return True
def get_params(self):
"""
Gets all parameters in all param_groups with gradients
"""
return (
p for group in self.param_groups for p in group["params"] if p.requires_grad
)
def zero_hessian(self):
"""
Zeros out the accumalated hessian traces.
"""
for p in self.get_params():
if (
not isinstance(p.hess, float)
and self.state[p]["hessian step"] % self.update_each == 0
):
p.hess.zero_()
@torch.no_grad()
def set_hessian(self):
"""
Computes the Hutchinson approximation of the hessian trace and accumulates it for each trainable parameter.
"""
params = []
for p in filter(lambda p: p.grad is not None, self.get_params()):
if (
self.state[p]["hessian step"] % self.update_each == 0
): # compute the trace only each `update_each` step
params.append(p)
self.state[p]["hessian step"] += 1
if len(params) == 0:
return
if (
self.generator.device != params[0].device
): # hackish way of casting the generator to the right device
self.generator = torch.Generator(params[0].device).manual_seed(self.seed)
grads = [p.grad for p in params]
for i in range(self.n_samples):
# Rademacher distribution {-1.0, 1.0}
zs = [
torch.randint(0, 2, p.size(), generator=self.generator, device=p.device)
* 2.0
- 1.0
for p in params
]
h_zs = torch.autograd.grad(
grads,
params,
grad_outputs=zs,
only_inputs=True,
retain_graph=i < self.n_samples - 1,
)
for h_z, z, p in zip(h_zs, zs, params):
p.hess += (
h_z * z / self.n_samples
) # approximate the expected values of z*(H@z)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step.
Arguments:
closure (callable, optional) -- a closure that reevaluates the model and returns the loss (default: None)
"""
loss = None
if closure is not None:
loss = closure()
self.zero_hessian()
self.set_hessian()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None or p.hess is None:
continue
if self.avg_conv_kernel and p.dim() == 4:
p.hess = (
torch.abs(p.hess)
.mean(dim=[2, 3], keepdim=True)
.expand_as(p.hess)
.clone()
)
# Perform correct stepweight decay as in AdamW
p.mul_(1 - group["lr"] * group["weight_decay"])
state = self.state[p]
# State initialization
if len(state) == 1:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
# Exponential moving average of Hessian diagonal square values
state["exp_hessian_diag_sq"] = torch.zeros_like(p)
exp_avg, exp_hessian_diag_sq = (
state["exp_avg"],
state["exp_hessian_diag_sq"],
)
beta1, beta2 = group["betas"]
state["step"] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1)
exp_hessian_diag_sq.mul_(beta2).addcmul_(
p.hess, p.hess, value=1 - beta2
)
bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
k = group["hessian_power"]
denom = (
(exp_hessian_diag_sq / bias_correction2)
.pow_(k / 2)
.add_(group["eps"])
)
# make update
step_size = group["lr"] / bias_correction1
p.addcdiv_(exp_avg, denom, value=-step_size)
return loss