|
"""NovoGrad Optimizer. |
|
Original impl by Masashi Kimura (Convergence Lab): https://github.com/convergence-lab/novograd |
|
Paper: `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks` |
|
- https://arxiv.org/abs/1905.11286 |
|
""" |
|
|
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
import math |
|
|
|
|
|
class NovoGrad(Optimizer): |
|
def __init__( |
|
self, |
|
params, |
|
grad_averaging=False, |
|
lr=0.1, |
|
betas=(0.95, 0.98), |
|
eps=1e-8, |
|
weight_decay=0, |
|
): |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
|
super(NovoGrad, self).__init__(params, defaults) |
|
self._lr = lr |
|
self._beta1 = betas[0] |
|
self._beta2 = betas[1] |
|
self._eps = eps |
|
self._wd = weight_decay |
|
self._grad_averaging = grad_averaging |
|
|
|
self._momentum_initialized = False |
|
|
|
def step(self, closure=None): |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
if not self._momentum_initialized: |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
state = self.state[p] |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError("NovoGrad does not support sparse gradients") |
|
|
|
v = torch.norm(grad) ** 2 |
|
m = grad / (torch.sqrt(v) + self._eps) + self._wd * p.data |
|
state["step"] = 0 |
|
state["v"] = v |
|
state["m"] = m |
|
state["grad_ema"] = None |
|
self._momentum_initialized = True |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
state = self.state[p] |
|
state["step"] += 1 |
|
|
|
step, v, m = state["step"], state["v"], state["m"] |
|
grad_ema = state["grad_ema"] |
|
|
|
grad = p.grad.data |
|
g2 = torch.norm(grad) ** 2 |
|
grad_ema = ( |
|
g2 |
|
if grad_ema is None |
|
else grad_ema * self._beta2 + g2 * (1.0 - self._beta2) |
|
) |
|
grad *= 1.0 / (torch.sqrt(grad_ema) + self._eps) |
|
|
|
if self._grad_averaging: |
|
grad *= 1.0 - self._beta1 |
|
|
|
g2 = torch.norm(grad) ** 2 |
|
v = self._beta2 * v + (1.0 - self._beta2) * g2 |
|
m = self._beta1 * m + ( |
|
grad / (torch.sqrt(v) + self._eps) + self._wd * p.data |
|
) |
|
bias_correction1 = 1 - self._beta1 ** step |
|
bias_correction2 = 1 - self._beta2 ** step |
|
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 |
|
|
|
state["v"], state["m"] = v, m |
|
state["grad_ema"] = grad_ema |
|
p.data.add_(-step_size, m) |
|
return loss |
|
|