""" Optimizer Factory w/ Custom Weight Decay Hacked together by / Copyright 2020 Ross Wightman """ import torch from torch import optim as optim from .adafactor import Adafactor from .adahessian import Adahessian from .adamp import AdamP from .lookahead import Lookahead from .nadam import Nadam from .novograd import NovoGrad from .nvnovograd import NvNovoGrad from .radam import RAdam from .rmsprop_tf import RMSpropTF from .sgdp import SGDP try: from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD has_apex = True except ImportError: has_apex = False def add_weight_decay(model, weight_decay=1e-5, skip_list=()): decay = [] no_decay = [] for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: no_decay.append(param) else: decay.append(param) return [ {"params": no_decay, "weight_decay": 0.0}, {"params": decay, "weight_decay": weight_decay}, ] def create_optimizer(args, model, filter_bias_and_bn=True): opt_lower = args.opt.lower() weight_decay = args.weight_decay if weight_decay and filter_bias_and_bn: skip = {} if hasattr(model, "no_weight_decay"): skip = model.no_weight_decay() parameters = add_weight_decay(model, weight_decay, skip) weight_decay = 0.0 else: parameters = filter( lambda p: p.requires_grad, model.parameters() ) # model.parameters() if "fused" in opt_lower: assert ( has_apex and torch.cuda.is_available() ), "APEX and CUDA required for fused optimizers" opt_args = dict(lr=args.lr, weight_decay=weight_decay) if hasattr(args, "opt_eps") and args.opt_eps is not None: opt_args["eps"] = args.opt_eps if hasattr(args, "opt_betas") and args.opt_betas is not None: opt_args["betas"] = args.opt_betas if hasattr(args, "opt_args") and args.opt_args is not None: opt_args.update(args.opt_args) opt_split = opt_lower.split("_") opt_lower = opt_split[-1] if opt_lower == "sgd" or opt_lower == "nesterov": opt_args.pop("eps", None) optimizer = optim.SGD( parameters, momentum=args.momentum, nesterov=True, **opt_args ) elif opt_lower == "momentum": opt_args.pop("eps", None) optimizer = optim.SGD( parameters, momentum=args.momentum, nesterov=False, **opt_args ) elif opt_lower == "adam": optimizer = optim.Adam(parameters, **opt_args) elif opt_lower == "adamw": optimizer = optim.AdamW(parameters, **opt_args) elif opt_lower == "nadam": optimizer = Nadam(parameters, **opt_args) elif opt_lower == "radam": optimizer = RAdam(parameters, **opt_args) elif opt_lower == "adamp": optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) elif opt_lower == "sgdp": optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == "adadelta": optimizer = optim.Adadelta(parameters, **opt_args) elif opt_lower == "adafactor": if not args.lr: opt_args["lr"] = None optimizer = Adafactor(parameters, **opt_args) elif opt_lower == "adahessian": optimizer = Adahessian(parameters, **opt_args) elif opt_lower == "rmsprop": optimizer = optim.RMSprop( parameters, alpha=0.9, momentum=args.momentum, **opt_args ) elif opt_lower == "rmsproptf": optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == "novograd": optimizer = NovoGrad(parameters, **opt_args) elif opt_lower == "nvnovograd": optimizer = NvNovoGrad(parameters, **opt_args) elif opt_lower == "fusedsgd": opt_args.pop("eps", None) optimizer = FusedSGD( parameters, momentum=args.momentum, nesterov=True, **opt_args ) elif opt_lower == "fusedmomentum": opt_args.pop("eps", None) optimizer = FusedSGD( parameters, momentum=args.momentum, nesterov=False, **opt_args ) elif opt_lower == "fusedadam": optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) elif opt_lower == "fusedadamw": optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) elif opt_lower == "fusedlamb": optimizer = FusedLAMB(parameters, **opt_args) elif opt_lower == "fusednovograd": opt_args.setdefault("betas", (0.95, 0.98)) optimizer = FusedNovoGrad(parameters, **opt_args) else: assert False and "Invalid optimizer" raise ValueError if len(opt_split) > 1: if opt_split[0] == "lookahead": optimizer = Lookahead(optimizer) return optimizer