""" Adafactor Optimizer Lifted from https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py Original header/copyright below. """ # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import math class Adafactor(torch.optim.Optimizer): """Implements Adafactor algorithm. This implementation is based on: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` (see https://arxiv.org/abs/1804.04235) Note that this optimizer internally adjusts the learning rate depending on the *scale_parameter*, *relative_step* and *warmup_init* options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and `relative_step=False`. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): external learning rate (default: None) eps (tuple[float, float]): regularization constants for square gradient and parameter scale respectively (default: (1e-30, 1e-3)) clip_threshold (float): threshold of root mean square of final gradient update (default: 1.0) decay_rate (float): coefficient used to compute running averages of square gradient (default: -0.8) beta1 (float): coefficient used for computing running averages of gradient (default: None) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) scale_parameter (bool): if True, learning rate is scaled by root mean square of parameter (default: True) relative_step (bool): if True, time-dependent learning rate is computed instead of external learning rate (default: True) warmup_init (bool): time-dependent learning rate computation depends on whether warm-up initialization is being used (default: False) """ def __init__( self, params, lr=None, eps=1e-30, eps_scale=1e-3, clip_threshold=1.0, decay_rate=-0.8, betas=None, weight_decay=0.0, scale_parameter=True, warmup_init=False, ): relative_step = lr is None if warmup_init and not relative_step: raise ValueError("warmup_init requires relative_step=True") beta1 = ( None if betas is None else betas[0] ) # make it compat with standard betas arg defaults = dict( lr=lr, eps=eps, eps_scale=eps_scale, clip_threshold=clip_threshold, decay_rate=decay_rate, beta1=beta1, weight_decay=weight_decay, scale_parameter=scale_parameter, relative_step=relative_step, warmup_init=warmup_init, ) super(Adafactor, self).__init__(params, defaults) @staticmethod def _get_lr(param_group, param_state): if param_group["relative_step"]: min_step = ( 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2 ) lr_t = min(min_step, 1.0 / math.sqrt(param_state["step"])) param_scale = 1.0 if param_group["scale_parameter"]: param_scale = max(param_group["eps_scale"], param_state["RMS"]) param_group["lr"] = lr_t * param_scale return param_group["lr"] @staticmethod def _get_options(param_group, param_shape): factored = len(param_shape) >= 2 use_first_moment = param_group["beta1"] is not None return factored, use_first_moment @staticmethod def _rms(tensor): return tensor.norm(2) / (tensor.numel() ** 0.5) def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col): r_factor = ( (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)) .rsqrt_() .unsqueeze(-1) ) c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() return torch.mul(r_factor, c_factor) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError("Adafactor does not support sparse gradients.") state = self.state[p] grad_shape = grad.shape factored, use_first_moment = self._get_options(group, grad_shape) # State Initialization if len(state) == 0: state["step"] = 0 if use_first_moment: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(grad) if factored: state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) state["exp_avg_sq_col"] = torch.zeros( grad_shape[:-2] + grad_shape[-1:] ).to(grad) else: state["exp_avg_sq"] = torch.zeros_like(grad) state["RMS"] = 0 else: if use_first_moment: state["exp_avg"] = state["exp_avg"].to(grad) if factored: state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) else: state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state["step"] += 1 state["RMS"] = self._rms(p_data_fp32) lr_t = self._get_lr(group, state) beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) update = grad ** 2 + group["eps"] if factored: exp_avg_sq_row = state["exp_avg_sq_row"] exp_avg_sq_col = state["exp_avg_sq_col"] exp_avg_sq_row.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-1)) exp_avg_sq_col.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-2)) # exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=1.0 - beta2t) # pytorch 1.6+ # exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=1.0 - beta2t) # Approximation of exponential moving average of square of gradient update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) update.mul_(grad) else: exp_avg_sq = state["exp_avg_sq"] exp_avg_sq.mul_(beta2t).add_(1.0 - beta2t, update) # exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t) # pytorch 1.6+ update = exp_avg_sq.rsqrt().mul_(grad) update.div_( (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0) ) update.mul_(lr_t) if use_first_moment: exp_avg = state["exp_avg"] exp_avg.mul_(group["beta1"]).add_(1 - group["beta1"], update) # exp_avg.mul_(group['beta1']).add_(update, alpha=1 - group['beta1']) # pytorch 1.6+ update = exp_avg if group["weight_decay"] != 0: p_data_fp32.add_(-group["weight_decay"] * lr_t, p_data_fp32) # p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * lr_t) # pytorch 1.6+ p_data_fp32.add_(-update) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss