""" SGDP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/sgdp.py Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 Code: https://github.com/clovaai/AdamP Copyright (c) 2020-present NAVER Corp. MIT license """ import torch import torch.nn as nn from torch.optim.optimizer import Optimizer, required import math class SGDP(Optimizer): def __init__( self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, eps=1e-8, delta=0.1, wd_ratio=0.1, ): defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, eps=eps, delta=delta, wd_ratio=wd_ratio, ) super(SGDP, self).__init__(params, defaults) def _channel_view(self, x): return x.view(x.size(0), -1) def _layer_view(self, x): return x.view(1, -1) def _cosine_similarity(self, x, y, eps, view_func): x = view_func(x) y = view_func(y) x_norm = x.norm(dim=1).add_(eps) y_norm = y.norm(dim=1).add_(eps) dot = (x * y).sum(dim=1) return dot.abs() / x_norm / y_norm def _projection(self, p, grad, perturb, delta, wd_ratio, eps): wd = 1 expand_size = [-1] + [1] * (len(p.shape) - 1) for view_func in [self._channel_view, self._layer_view]: cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func) if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)): p_n = p.data / view_func(p.data).norm(dim=1).view(expand_size).add_(eps) perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(expand_size) wd = wd_ratio return perturb, wd return perturb, wd def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group["weight_decay"] momentum = group["momentum"] dampening = group["dampening"] nesterov = group["nesterov"] for p in group["params"]: if p.grad is None: continue grad = p.grad.data state = self.state[p] # State initialization if len(state) == 0: state["momentum"] = torch.zeros_like(p.data) # SGD buf = state["momentum"] buf.mul_(momentum).add_(1 - dampening, grad) if nesterov: d_p = grad + momentum * buf else: d_p = buf # Projection wd_ratio = 1 if len(p.shape) > 1: d_p, wd_ratio = self._projection( p, grad, d_p, group["delta"], group["wd_ratio"], group["eps"] ) # Weight decay if weight_decay != 0: p.data.mul_( 1 - group["lr"] * group["weight_decay"] * wd_ratio / (1 - momentum) ) # Step p.data.add_(-group["lr"], d_p) return loss