File size: 8,346 Bytes
2b41a4f dde60eb e000da2 533e12f e000da2 2b41a4f 53e8363 a175b5e d91159a a175b5e 0369ded e6eb920 0369ded e6eb920 0369ded 44ba3bc 7067377 44ba3bc 7067377 44ba3bc d8b6e3c 44ba3bc 7067377 44ba3bc 0369ded b92ceeb 0369ded 7067377 44ba3bc 7067377 44ba3bc e6eb920 b92ceeb 736f9a9 b92ceeb 44ba3bc b92ceeb d8b6e3c 44ba3bc cd7275a 7067377 cd7275a 44ba3bc 53e8363 ec7de9d 44ba3bc 7067377 44ba3bc ec7de9d 44ba3bc 7067377 44ba3bc 6d484ee 44ba3bc 6d484ee 44ba3bc 6d484ee 44ba3bc a9124af 44ba3bc 6d484ee 44ba3bc 4b60089 44ba3bc 4b60089 b92ceeb d8b6e3c b92ceeb 44ba3bc d0dd119 7564365 b92ceeb 44ba3bc d8b6e3c 44ba3bc 38d4825 44ba3bc b92ceeb eea6e8b 38d4825 d0dd119 742853f 27ac605 eef2ace |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
library_name: transformers
tags:
- torchao
- phi
- phi4
- nlp
- code
- math
- chat
- conversational
license: mit
language:
- multilingual
base_model:
- microsoft/Phi-4-mini-instruct
pipeline_tag: text-generation
---
# Quantization Recipe
First need to install the required packages:
```
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
```
## Untie Embedding Weights
Before quantization, since we need quantize input embedding and unembedding (lm_head) layer which are tied, we first need to untie the model:
```
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
)
import torch
model_id = "microsoft/Phi-4-mini-instruct"
untied_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
print(untied_model)
from transformers.modeling_utils import find_tied_parameters
print("tied weights:", find_tied_parameters(untied_model))
if getattr(untied_model.config.get_text_config(decoder=True), "tie_word_embeddings"):
setattr(untied_model.config.get_text_config(decoder=True), "tie_word_embeddings", False)
untied_model._tied_weights_keys = []
untied_model.lm_head.weight = torch.nn.Parameter(untied_model.lm_head.weight.clone())
print("tied weights:", find_tied_parameters(untied_model))
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-untied-weights"
untied_model.push_to_hub(save_to)
tokenizer.push_to_hub(save_to)
```
## Quantization
We used following code to get the quantized model:
```
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
TorchAoConfig,
)
from torchao.quantization.quant_api import (
IntxWeightOnlyConfig,
Int8DynamicActivationIntxWeightConfig,
AOPerModuleConfig,
quantize_,
)
from torchao.quantization.granularity import PerGroup, PerAxis
import torch
# we start from the model with untied weights
model_id = "microsoft/Phi-4-mini-instruct"
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
untied_model_id = f"{USER_ID}/{MODEL_NAME}-untied-weights"
embedding_config = IntxWeightOnlyConfig(
weight_dtype=torch.int8,
granularity=PerAxis(0),
)
linear_config = Int8DynamicActivationIntxWeightConfig(
weight_dtype=torch.int4,
weight_granularity=PerGroup(32),
weight_scale_dtype=torch.bfloat16,
)
quant_config = AOPerModuleConfig({"_default": linear_config, "model.embed_tokens": embedding_config})
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True, untie_embedding_weights=True, modules_to_not_convert=[])
quantized_model = AutoModelForCausalLM.from_pretrained(untied_model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Push to hub
USER_ID = "YOUR_USER_ID"
save_to = f"{USER_ID}/phi4-mini-8dq4w"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)
# Manual testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
{
"role": "system",
"content": "",
},
{"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
templated_prompt,
return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])
# Save to disk
state_dict = quantized_model.state_dict()
torch.save(state_dict, "phi4-mini-8dq4w.bin")
```
The response from the manual testing is:
```
Hello! As an AI, I don't have consciousness in the way humans do, but I am fully operational and here to assist you. How can I help you today?
```
# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
Need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install
## baseline
```
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 64
```
## 8dq4w
```
import lm_eval
from lm_eval import evaluator
from lm_eval.utils import (
make_table,
)
lm_eval_model = lm_eval.models.huggingface.HFLM(pretrained=quantized_model, batch_size=64)
results = evaluator.simple_evaluate(
lm_eval_model, tasks=["hellaswag"], device="cuda:0", batch_size="auto"
)
print(make_table(results))
```
| Benchmark | | |
|----------------------------------|-------------|-------------------|
| | Phi-4 mini-Ins | phi4-mini-8dq4w|
| **Popular aggregated benchmark** | | |
| mmlu (0 shot) | 66.73 | 63.11 |
| mmlu_pro (5-shot) | 44.71 | 35.31 |
| **Reasoning** | | |
| arc_challenge | 56.91 | 55.12 |
| gpqa_main_zeroshot | 30.13 | 29.02 |
| hellaswag | 54.57 | 53.23 |
| openbookqa | 33.00 | 32.40 |
| piqa (0-shot) | 77.64 | 76.66 |
| siqa | 49.59 | 47.08 |
| truthfulqa_mc2 (0-shot) | 48.39 | 47.99 |
| winogrande (0-shot) | 71.11 | 70.17 |
| **Multilingual** | | |
| mgsm_en_cot_en | 60.80 | 58.8 |
| **Math** | | |
| gsm8k (5-shot) | 81.88 | 70.43 |
| Mathqa (0-shot) | 42.31 | 41.57 |
# Exporting to ExecuTorch
We can run the quantized model on a mobile phone using [ExecuTorch](https://github.com/pytorch/executorch).
Once ExecuTorch is [set-up](https://pytorch.org/executorch/main/getting-started.html), exporting and running the model on device is a breeze.
We first convert the quantized checkpoint to one ExecuTorch's LLM export script expects by renaming some of the checkpoint keys.
The following script does this for you.
```
python -m executorch.examples.models.phi_4_mini.convert_weights phi4-mini-8dq4w.bin phi4-mini-8dq4w-converted.bin
```
Once the checkpoint is converted, we can export to ExecuTorch's PTE format with the XNNPACK delegate.
```
PARAMS="executorch/examples/models/phi_4_mini/config.json"
python -m executorch.examples.models.llama.export_llama \
--model "phi_4_mini" \
--checkpoint "phi4-mini-8dq4w-converted.bin" \
--params "$PARAMS" \
-kv \
--use_sdpa_with_kv_cache \
-X \
--metadata '{"get_bos_id":199999, "get_eos_ids":[200020,199999]}' \
--output_name="phi4-mini-8dq4w.pte"
```
## Running in a mobile app
The PTE file can be run with ExecuTorch on a mobile phone. See the [instructions](https://pytorch.org/executorch/main/llm/llama-demo-ios.html) for doing this in iOS.
On iPhone 15 Pro, the model runs at 17.3 tokens/sec and uses 3206 Mb of memory.

# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein. |