Update README.md
Browse files
README.md
CHANGED
@@ -210,9 +210,9 @@ We can run the quantized model on a mobile phone using [ExecuTorch](https://gith
|
|
210 |
Once ExecuTorch is [set-up](https://pytorch.org/executorch/main/getting-started.html), exporting and running the model on device is a breeze.
|
211 |
|
212 |
We first convert the [quantized checkpoint](https://huggingface.co/pytorch/Phi-4-mini-instruct-8da4w/blob/main/pytorch_model.bin) to one ExecuTorch's LLM export script expects by renaming some of the checkpoint keys.
|
213 |
-
The following script does this for you. We have uploaded the converted checkpoint [
|
214 |
```Shell
|
215 |
-
python -m executorch.examples.models.phi_4_mini.convert_weights pytorch_model.bin
|
216 |
```
|
217 |
|
218 |
Once the checkpoint is converted, we can export to ExecuTorch's pte format with the XNNPACK delegate.
|
@@ -222,7 +222,7 @@ The below command exports with a max_seq_length/max_context_length of 128, the d
|
|
222 |
PARAMS="executorch/examples/models/phi_4_mini/config.json"
|
223 |
python -m executorch.examples.models.llama.export_llama \
|
224 |
--model "phi_4_mini" \
|
225 |
-
--checkpoint "
|
226 |
--params "$PARAMS" \
|
227 |
-kv \
|
228 |
--use_sdpa_with_kv_cache \
|
|
|
210 |
Once ExecuTorch is [set-up](https://pytorch.org/executorch/main/getting-started.html), exporting and running the model on device is a breeze.
|
211 |
|
212 |
We first convert the [quantized checkpoint](https://huggingface.co/pytorch/Phi-4-mini-instruct-8da4w/blob/main/pytorch_model.bin) to one ExecuTorch's LLM export script expects by renaming some of the checkpoint keys.
|
213 |
+
The following script does this for you. We have uploaded the converted checkpoint [pytorch_model_converted.bin](https://huggingface.co/pytorch/Phi-4-mini-instruct-8da4w/blob/main/pytorch_model_converted.bin) for convenience.
|
214 |
```Shell
|
215 |
+
python -m executorch.examples.models.phi_4_mini.convert_weights pytorch_model.bin pytorch_model_converted.bin
|
216 |
```
|
217 |
|
218 |
Once the checkpoint is converted, we can export to ExecuTorch's pte format with the XNNPACK delegate.
|
|
|
222 |
PARAMS="executorch/examples/models/phi_4_mini/config.json"
|
223 |
python -m executorch.examples.models.llama.export_llama \
|
224 |
--model "phi_4_mini" \
|
225 |
+
--checkpoint "pytorch_model_converted.bin" \
|
226 |
--params "$PARAMS" \
|
227 |
-kv \
|
228 |
--use_sdpa_with_kv_cache \
|