Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,25 +1,25 @@
|
|
1 |
---
|
2 |
library_name: pytorch
|
3 |
license: bsd-3-clause
|
4 |
-
pipeline_tag: image-classification
|
5 |
tags:
|
6 |
- quantized
|
7 |
- android
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |

|
12 |
|
13 |
-
# ConvNext-Tiny-
|
14 |
## Imagenet classifier and general purpose backbone
|
15 |
|
16 |
|
17 |
ConvNextTiny is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
18 |
|
19 |
-
This model is an implementation of ConvNext-Tiny-
|
20 |
|
21 |
|
22 |
-
This repository provides scripts to run ConvNext-Tiny-
|
23 |
More details on model performance across various devices, can be found
|
24 |
[here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
|
25 |
|
@@ -36,17 +36,10 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| ConvNext-Tiny-
|
40 |
-
| ConvNext-Tiny-
|
41 |
-
| ConvNext-Tiny-
|
42 |
-
| ConvNext-Tiny-
|
43 |
-
| ConvNext-Tiny-w8a16-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.088 ms | 0 - 4 MB | INT8 | NPU | Use Export Script |
|
44 |
-
| ConvNext-Tiny-w8a16-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 3.098 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
|
45 |
-
| ConvNext-Tiny-w8a16-Quantized | SA8295P ADP | SA8295P | QNN | 5.267 ms | 0 - 15 MB | INT8 | NPU | Use Export Script |
|
46 |
-
| ConvNext-Tiny-w8a16-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.113 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
|
47 |
-
| ConvNext-Tiny-w8a16-Quantized | SA8775P ADP | SA8775P | QNN | 4.498 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
|
48 |
-
| ConvNext-Tiny-w8a16-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.174 ms | 0 - 38 MB | INT8 | NPU | Use Export Script |
|
49 |
-
| ConvNext-Tiny-w8a16-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.393 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
|
50 |
|
51 |
|
52 |
|
@@ -56,7 +49,7 @@ More details on model performance across various devices, can be found
|
|
56 |
|
57 |
Install the package via pip:
|
58 |
```bash
|
59 |
-
pip install
|
60 |
```
|
61 |
|
62 |
|
@@ -107,15 +100,91 @@ python -m qai_hub_models.models.convnext_tiny_w8a16_quantized.export
|
|
107 |
```
|
108 |
Profiling Results
|
109 |
------------------------------------------------------------
|
110 |
-
ConvNext-Tiny-
|
111 |
-
Device : Samsung Galaxy S23 (13)
|
112 |
-
Runtime :
|
113 |
-
Estimated inference time (ms) :
|
114 |
-
Estimated peak memory usage (MB): [
|
115 |
-
Total # Ops :
|
116 |
-
Compute Unit(s) : NPU (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
```
|
|
|
|
|
118 |
|
|
|
|
|
119 |
|
120 |
|
121 |
|
@@ -149,12 +218,12 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
149 |
|
150 |
|
151 |
## View on Qualcomm® AI Hub
|
152 |
-
Get more details on ConvNext-Tiny-
|
153 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
154 |
|
155 |
|
156 |
## License
|
157 |
-
* The license for the original implementation of ConvNext-Tiny-
|
158 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
159 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
160 |
|
|
|
1 |
---
|
2 |
library_name: pytorch
|
3 |
license: bsd-3-clause
|
|
|
4 |
tags:
|
5 |
- quantized
|
6 |
- android
|
7 |
+
pipeline_tag: image-classification
|
8 |
|
9 |
---
|
10 |
|
11 |

|
12 |
|
13 |
+
# ConvNext-Tiny-W8A16-Quantized: Optimized for Mobile Deployment
|
14 |
## Imagenet classifier and general purpose backbone
|
15 |
|
16 |
|
17 |
ConvNextTiny is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
18 |
|
19 |
+
This model is an implementation of ConvNext-Tiny-W8A16-Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/convnext.py).
|
20 |
|
21 |
|
22 |
+
This repository provides scripts to run ConvNext-Tiny-W8A16-Quantized on Qualcomm® devices.
|
23 |
More details on model performance across various devices, can be found
|
24 |
[here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
|
25 |
|
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| ConvNext-Tiny-W8A16-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 83.478 ms | 210 - 361 MB | INT8 | NPU | [ConvNext-Tiny-W8A16-Quantized.onnx](https://huggingface.co/qualcomm/ConvNext-Tiny-W8A16-Quantized/blob/main/ConvNext-Tiny-W8A16-Quantized.onnx) |
|
40 |
+
| ConvNext-Tiny-W8A16-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 71.551 ms | 218 - 531 MB | INT8 | NPU | [ConvNext-Tiny-W8A16-Quantized.onnx](https://huggingface.co/qualcomm/ConvNext-Tiny-W8A16-Quantized/blob/main/ConvNext-Tiny-W8A16-Quantized.onnx) |
|
41 |
+
| ConvNext-Tiny-W8A16-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 61.189 ms | 216 - 511 MB | INT8 | NPU | [ConvNext-Tiny-W8A16-Quantized.onnx](https://huggingface.co/qualcomm/ConvNext-Tiny-W8A16-Quantized/blob/main/ConvNext-Tiny-W8A16-Quantized.onnx) |
|
42 |
+
| ConvNext-Tiny-W8A16-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 82.39 ms | 232 - 232 MB | INT8 | NPU | [ConvNext-Tiny-W8A16-Quantized.onnx](https://huggingface.co/qualcomm/ConvNext-Tiny-W8A16-Quantized/blob/main/ConvNext-Tiny-W8A16-Quantized.onnx) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
|
45 |
|
|
|
49 |
|
50 |
Install the package via pip:
|
51 |
```bash
|
52 |
+
pip install qai-hub-models
|
53 |
```
|
54 |
|
55 |
|
|
|
100 |
```
|
101 |
Profiling Results
|
102 |
------------------------------------------------------------
|
103 |
+
ConvNext-Tiny-W8A16-Quantized
|
104 |
+
Device : Samsung Galaxy S23 (13)
|
105 |
+
Runtime : ONNX
|
106 |
+
Estimated inference time (ms) : 83.5
|
107 |
+
Estimated peak memory usage (MB): [210, 361]
|
108 |
+
Total # Ops : 397
|
109 |
+
Compute Unit(s) : NPU (357 ops) CPU (40 ops)
|
110 |
+
```
|
111 |
+
|
112 |
+
|
113 |
+
## How does this work?
|
114 |
+
|
115 |
+
This [export script](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized/qai_hub_models/models/ConvNext-Tiny-W8A16-Quantized/export.py)
|
116 |
+
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
117 |
+
on-device. Lets go through each step below in detail:
|
118 |
+
|
119 |
+
Step 1: **Compile model for on-device deployment**
|
120 |
+
|
121 |
+
To compile a PyTorch model for on-device deployment, we first trace the model
|
122 |
+
in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
123 |
+
|
124 |
+
```python
|
125 |
+
import torch
|
126 |
+
|
127 |
+
import qai_hub as hub
|
128 |
+
from qai_hub_models.models.convnext_tiny_w8a16_quantized import Model
|
129 |
+
|
130 |
+
# Load the model
|
131 |
+
torch_model = Model.from_pretrained()
|
132 |
+
|
133 |
+
# Device
|
134 |
+
device = hub.Device("Samsung Galaxy S24")
|
135 |
+
|
136 |
+
# Trace model
|
137 |
+
input_shape = torch_model.get_input_spec()
|
138 |
+
sample_inputs = torch_model.sample_inputs()
|
139 |
+
|
140 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
141 |
+
|
142 |
+
# Compile model on a specific device
|
143 |
+
compile_job = hub.submit_compile_job(
|
144 |
+
model=pt_model,
|
145 |
+
device=device,
|
146 |
+
input_specs=torch_model.get_input_spec(),
|
147 |
+
)
|
148 |
+
|
149 |
+
# Get target model to run on-device
|
150 |
+
target_model = compile_job.get_target_model()
|
151 |
+
|
152 |
+
```
|
153 |
+
|
154 |
+
|
155 |
+
Step 2: **Performance profiling on cloud-hosted device**
|
156 |
+
|
157 |
+
After compiling models from step 1. Models can be profiled model on-device using the
|
158 |
+
`target_model`. Note that this scripts runs the model on a device automatically
|
159 |
+
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
160 |
+
provided job URL to view a variety of on-device performance metrics.
|
161 |
+
```python
|
162 |
+
profile_job = hub.submit_profile_job(
|
163 |
+
model=target_model,
|
164 |
+
device=device,
|
165 |
+
)
|
166 |
+
|
167 |
+
```
|
168 |
+
|
169 |
+
Step 3: **Verify on-device accuracy**
|
170 |
+
|
171 |
+
To verify the accuracy of the model on-device, you can run on-device inference
|
172 |
+
on sample input data on the same cloud hosted device.
|
173 |
+
```python
|
174 |
+
input_data = torch_model.sample_inputs()
|
175 |
+
inference_job = hub.submit_inference_job(
|
176 |
+
model=target_model,
|
177 |
+
device=device,
|
178 |
+
inputs=input_data,
|
179 |
+
)
|
180 |
+
on_device_output = inference_job.download_output_data()
|
181 |
+
|
182 |
```
|
183 |
+
With the output of the model, you can compute like PSNR, relative errors or
|
184 |
+
spot check the output with expected output.
|
185 |
|
186 |
+
**Note**: This on-device profiling and inference requires access to Qualcomm®
|
187 |
+
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
188 |
|
189 |
|
190 |
|
|
|
218 |
|
219 |
|
220 |
## View on Qualcomm® AI Hub
|
221 |
+
Get more details on ConvNext-Tiny-W8A16-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/convnext_tiny_w8a16_quantized).
|
222 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
223 |
|
224 |
|
225 |
## License
|
226 |
+
* The license for the original implementation of ConvNext-Tiny-W8A16-Quantized can be found
|
227 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
228 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
229 |
|