Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,32 +36,30 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| ConvNext-Tiny-w8a16-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.
|
40 |
-
| ConvNext-Tiny-w8a16-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.
|
41 |
-
| ConvNext-Tiny-w8a16-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.
|
42 |
-
| ConvNext-Tiny-w8a16-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 13.
|
43 |
-
| ConvNext-Tiny-w8a16-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.
|
44 |
-
| ConvNext-Tiny-w8a16-Quantized |
|
45 |
-
| ConvNext-Tiny-w8a16-Quantized |
|
46 |
-
| ConvNext-Tiny-w8a16-Quantized |
|
47 |
-
| ConvNext-Tiny-w8a16-Quantized |
|
48 |
-
| ConvNext-Tiny-w8a16-Quantized |
|
49 |
-
| ConvNext-Tiny-w8a16-Quantized |
|
50 |
-
| ConvNext-Tiny-w8a16-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.381 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
|
51 |
|
52 |
|
53 |
|
54 |
|
55 |
## Installation
|
56 |
|
57 |
-
This model can be installed as a Python package via pip.
|
58 |
|
|
|
59 |
```bash
|
60 |
-
pip install "qai-hub-models[
|
61 |
```
|
62 |
|
63 |
|
64 |
-
|
65 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
66 |
|
67 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -113,7 +111,7 @@ ConvNext-Tiny-w8a16-Quantized
|
|
113 |
Device : Samsung Galaxy S23 (13)
|
114 |
Runtime : QNN
|
115 |
Estimated inference time (ms) : 3.4
|
116 |
-
Estimated peak memory usage (MB): [0,
|
117 |
Total # Ops : 215
|
118 |
Compute Unit(s) : NPU (215 ops)
|
119 |
```
|
@@ -156,7 +154,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
156 |
|
157 |
|
158 |
## License
|
159 |
-
* The license for the original implementation of ConvNext-Tiny-w8a16-Quantized can be found
|
|
|
160 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
161 |
|
162 |
|
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| ConvNext-Tiny-w8a16-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.426 ms | 0 - 126 MB | INT8 | NPU | [ConvNext-Tiny-w8a16-Quantized.so](https://huggingface.co/qualcomm/ConvNext-Tiny-w8a16-Quantized/blob/main/ConvNext-Tiny-w8a16-Quantized.so) |
|
40 |
+
| ConvNext-Tiny-w8a16-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.459 ms | 0 - 42 MB | INT8 | NPU | [ConvNext-Tiny-w8a16-Quantized.so](https://huggingface.co/qualcomm/ConvNext-Tiny-w8a16-Quantized/blob/main/ConvNext-Tiny-w8a16-Quantized.so) |
|
41 |
+
| ConvNext-Tiny-w8a16-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.445 ms | 0 - 44 MB | INT8 | NPU | Use Export Script |
|
42 |
+
| ConvNext-Tiny-w8a16-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 13.081 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
|
43 |
+
| ConvNext-Tiny-w8a16-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.088 ms | 0 - 4 MB | INT8 | NPU | Use Export Script |
|
44 |
+
| ConvNext-Tiny-w8a16-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 3.098 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
|
45 |
+
| ConvNext-Tiny-w8a16-Quantized | SA8295P ADP | SA8295P | QNN | 5.267 ms | 0 - 15 MB | INT8 | NPU | Use Export Script |
|
46 |
+
| ConvNext-Tiny-w8a16-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.113 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
|
47 |
+
| ConvNext-Tiny-w8a16-Quantized | SA8775P ADP | SA8775P | QNN | 4.498 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
|
48 |
+
| ConvNext-Tiny-w8a16-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.174 ms | 0 - 38 MB | INT8 | NPU | Use Export Script |
|
49 |
+
| ConvNext-Tiny-w8a16-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.393 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
|
|
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
## Installation
|
55 |
|
|
|
56 |
|
57 |
+
Install the package via pip:
|
58 |
```bash
|
59 |
+
pip install "qai-hub-models[convnext-tiny-w8a16-quantized]"
|
60 |
```
|
61 |
|
62 |
|
|
|
63 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
64 |
|
65 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
111 |
Device : Samsung Galaxy S23 (13)
|
112 |
Runtime : QNN
|
113 |
Estimated inference time (ms) : 3.4
|
114 |
+
Estimated peak memory usage (MB): [0, 126]
|
115 |
Total # Ops : 215
|
116 |
Compute Unit(s) : NPU (215 ops)
|
117 |
```
|
|
|
154 |
|
155 |
|
156 |
## License
|
157 |
+
* The license for the original implementation of ConvNext-Tiny-w8a16-Quantized can be found
|
158 |
+
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
159 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
160 |
|
161 |
|