qaihm-bot commited on
Commit
277cb4c
·
verified ·
1 Parent(s): 0676ab9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: apache-2.0
4
+ tags:
5
+ - real_time
6
+ - android
7
+ pipeline_tag: object-detection
8
+
9
+ ---
10
+
11
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/rtmdet/web-assets/model_demo.png)
12
+
13
+ # RTMDet: Optimized for Mobile Deployment
14
+ ## Real-time object detection optimized for mobile and edge
15
+
16
+
17
+ RTMDet is a highly efficient model for real-time object detection,capable of predicting both the bounding boxes and classes of objects within an image.It is highly optimized for real-time applications, making it reliable for industrial and commercial use
18
+
19
+ This model is an implementation of RTMDet found [here](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet).
20
+
21
+
22
+ More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/rtmdet).
23
+
24
+ ### Model Details
25
+
26
+ - **Model Type:** Object detection
27
+ - **Model Stats:**
28
+ - Model checkpoint: RTMDet Medium
29
+ - Input resolution: 640x640
30
+ - Number of parameters: 27.5M
31
+ - Model size: 105 MB
32
+
33
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
+ |---|---|---|---|---|---|---|---|---|
35
+ | RTMDet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 16.655 ms | 0 - 16 MB | FP16 | NPU | -- |
36
+ | RTMDet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 16.756 ms | 1 - 150 MB | FP16 | NPU | -- |
37
+ | RTMDet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 12.399 ms | 0 - 102 MB | FP16 | NPU | -- |
38
+ | RTMDet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 12.989 ms | 5 - 44 MB | FP16 | NPU | -- |
39
+ | RTMDet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 11.629 ms | 0 - 64 MB | FP16 | NPU | -- |
40
+ | RTMDet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 11.77 ms | 5 - 36 MB | FP16 | NPU | -- |
41
+ | RTMDet | SA7255P ADP | SA7255P | TFLITE | 578.983 ms | 0 - 62 MB | FP16 | NPU | -- |
42
+ | RTMDet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 16.501 ms | 0 - 14 MB | FP16 | NPU | -- |
43
+ | RTMDet | SA8295P ADP | SA8295P | TFLITE | 34.28 ms | 0 - 70 MB | FP16 | NPU | -- |
44
+ | RTMDet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 16.418 ms | 0 - 12 MB | FP16 | NPU | -- |
45
+ | RTMDet | SA8775P ADP | SA8775P | TFLITE | 29.382 ms | 0 - 61 MB | FP16 | NPU | -- |
46
+ | RTMDet | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 578.983 ms | 0 - 62 MB | FP16 | NPU | -- |
47
+ | RTMDet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 15.949 ms | 0 - 15 MB | FP16 | NPU | -- |
48
+ | RTMDet | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 29.382 ms | 0 - 61 MB | FP16 | NPU | -- |
49
+ | RTMDet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 31.458 ms | 0 - 110 MB | FP16 | NPU | -- |
50
+ | RTMDet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 17.03 ms | 48 - 48 MB | FP16 | NPU | -- |
51
+
52
+
53
+
54
+
55
+ ## License
56
+ * The license for the original implementation of RTMDet can be found
57
+ [here](https://github.com/open-mmlab/mmdetection/blob/3.x/LICENSE).
58
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
59
+
60
+
61
+
62
+ ## References
63
+ * [RTMDet: An Empirical Study of Designing Real-Time Object Detectors](https://github.com/open-mmlab/mmdetection/blob/3.x/README.md)
64
+ * [Source Model Implementation](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet)
65
+
66
+
67
+
68
+ ## Community
69
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
70
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
71
+
72
+ ## Usage and Limitations
73
+
74
+ Model may not be used for or in connection with any of the following applications:
75
+
76
+ - Accessing essential private and public services and benefits;
77
+ - Administration of justice and democratic processes;
78
+ - Assessing or recognizing the emotional state of a person;
79
+ - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
80
+ - Education and vocational training;
81
+ - Employment and workers management;
82
+ - Exploitation of the vulnerabilities of persons resulting in harmful behavior;
83
+ - General purpose social scoring;
84
+ - Law enforcement;
85
+ - Management and operation of critical infrastructure;
86
+ - Migration, asylum and border control management;
87
+ - Predictive policing;
88
+ - Real-time remote biometric identification in public spaces;
89
+ - Recommender systems of social media platforms;
90
+ - Scraping of facial images (from the internet or otherwise); and/or
91
+ - Subliminal manipulation