File size: 18,790 Bytes
af3d024 abe750a af3d024 04f033f af3d024 975a374 af3d024 6d796e4 975a374 af3d024 2c406df af3d024 88c4457 5c3fbb2 ad1fc07 88c4457 2c406df e32c96b 0ceef01 ad1fc07 0ceef01 ad1fc07 0ceef01 ad1fc07 0ceef01 ad1fc07 88c4457 af3d024 1928792 af3d024 61cf7d5 e32c96b 2c406df 0ceef01 2c406df 61cf7d5 88c4457 af3d024 88c4457 af3d024 6d78176 af3d024 6d78176 af3d024 1928792 af3d024 6d78176 af3d024 d4a0cbd e68e87a af3d024 d4a0cbd e68e87a af3d024 04f033f af3d024 e68e87a 0060e2c e68e87a 0060e2c e68e87a 88c4457 af3d024 e32c96b af3d024 1928792 e32c96b af3d024 e32c96b af3d024 9cd16c2 af3d024 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-to-image
---

# SESR-M5: Optimized for Mobile Deployment
## Upscale images in real time
SESR M5 performs efficient on-device upscaling of images.
This model is an implementation of SESR-M5 found [here](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/sesr).
This repository provides scripts to run SESR-M5 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/sesr_m5).
### Model Details
- **Model Type:** Model_use_case.super_resolution
- **Model Stats:**
- Model checkpoint: sesr_m5_3x_checkpoint
- Input resolution: 128x128
- Number of parameters: 343K
- Model size (float): 1.32 MB
- Model size (w8a8): 395 KB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| SESR-M5 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 12.601 ms | 6 - 18 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 10.474 ms | 0 - 12 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.267 ms | 0 - 21 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.799 ms | 0 - 27 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.22 ms | 0 - 7 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.948 ms | 0 - 5 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 3.767 ms | 0 - 14 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.126 ms | 0 - 14 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 12.601 ms | 6 - 18 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 10.474 ms | 0 - 12 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.181 ms | 0 - 6 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.974 ms | 0 - 6 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 5.541 ms | 0 - 22 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.32 ms | 0 - 18 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.216 ms | 0 - 7 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.977 ms | 0 - 6 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 3.767 ms | 0 - 14 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.126 ms | 0 - 14 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.325 ms | 0 - 7 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.967 ms | 0 - 6 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.601 ms | 0 - 6 MB | NPU | [SESR-M5.onnx](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.onnx) |
| SESR-M5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.388 ms | 0 - 26 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.261 ms | 0 - 22 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.612 ms | 0 - 24 MB | NPU | [SESR-M5.onnx](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.onnx) |
| SESR-M5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.765 ms | 0 - 18 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) |
| SESR-M5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.304 ms | 0 - 20 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.694 ms | 1 - 15 MB | NPU | [SESR-M5.onnx](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.onnx) |
| SESR-M5 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.192 ms | 0 - 0 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) |
| SESR-M5 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.563 ms | 8 - 8 MB | NPU | [SESR-M5.onnx](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.onnx) |
| SESR-M5 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 5.802 ms | 2 - 14 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.91 ms | 0 - 13 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.681 ms | 0 - 22 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.938 ms | 0 - 26 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.302 ms | 1 - 8 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.633 ms | 0 - 9 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.065 ms | 0 - 14 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.856 ms | 0 - 15 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.085 ms | 2 - 20 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 3.015 ms | 0 - 18 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 23.305 ms | 2 - 4 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 5.802 ms | 2 - 14 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.91 ms | 0 - 13 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.351 ms | 0 - 6 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.646 ms | 0 - 10 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.361 ms | 0 - 22 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.373 ms | 0 - 18 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.369 ms | 0 - 6 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.651 ms | 0 - 9 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.065 ms | 0 - 14 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.856 ms | 0 - 15 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.366 ms | 0 - 7 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.644 ms | 0 - 10 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 0.966 ms | 0 - 8 MB | NPU | [SESR-M5.onnx](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.onnx) |
| SESR-M5 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.266 ms | 0 - 25 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.443 ms | 0 - 26 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.619 ms | 0 - 28 MB | NPU | [SESR-M5.onnx](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.onnx) |
| SESR-M5 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.602 ms | 0 - 19 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) |
| SESR-M5 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.461 ms | 0 - 20 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.695 ms | 1 - 19 MB | NPU | [SESR-M5.onnx](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.onnx) |
| SESR-M5 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.903 ms | 2 - 2 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) |
| SESR-M5 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.95 ms | 3 - 3 MB | NPU | [SESR-M5.onnx](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.onnx) |
## Installation
Install the package via pip:
```bash
pip install qai-hub-models
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.sesr_m5.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.sesr_m5.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.sesr_m5.export
```
```
Profiling Results
------------------------------------------------------------
SESR-M5
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 12.6
Estimated peak memory usage (MB): [6, 18]
Total # Ops : 25
Compute Unit(s) : npu (22 ops) gpu (0 ops) cpu (3 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/sesr_m5/qai_hub_models/models/SESR-M5/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.sesr_m5 import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.sesr_m5.demo --eval-mode on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.sesr_m5.demo -- --eval-mode on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on SESR-M5's performance across various devices [here](https://aihub.qualcomm.com/models/sesr_m5).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of SESR-M5 can be found
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Collapsible Linear Blocks for Super-Efficient Super Resolution](https://arxiv.org/abs/2103.09404)
* [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/sesr)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|