File size: 18,061 Bytes
10222e6
 
41a48d4
10222e6
 
ab9d3ed
10222e6
 
 
29d07a5
10222e6
 
 
 
45371da
10222e6
 
bc9ec9e
45371da
 
10222e6
 
 
 
 
 
 
41a48d4
10222e6
 
 
eacd5b9
c76eed2
 
 
10222e6
41a48d4
664f54c
e3fde5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c76eed2
e3fde5a
 
c76eed2
e3fde5a
 
c76eed2
e3fde5a
c76eed2
 
 
 
 
 
 
 
e3fde5a
c76eed2
 
 
 
 
 
 
 
 
 
e3fde5a
c76eed2
 
 
e3fde5a
c76eed2
 
 
 
 
 
 
10222e6
3ac030c
 
10222e6
 
 
 
71c1d82
10222e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7205c39
664f54c
 
 
41a48d4
 
e3fde5a
93bf5c4
41a48d4
 
7205c39
3ac030c
 
10222e6
 
3ac030c
10222e6
 
 
 
 
 
 
 
 
 
 
 
a98c2ed
10222e6
 
a98c2ed
10222e6
 
71c1d82
10222e6
a98c2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10222e6
 
 
 
 
 
 
 
 
 
 
 
2a73697
 
 
7f5e0b8
10222e6
 
 
 
 
 
 
 
 
2a73697
 
 
 
7f5e0b8
10222e6
 
 
 
 
 
29d07a5
10222e6
 
3ac030c
10222e6
 
 
 
 
93bf5c4
10222e6
 
 
 
 
93bf5c4
10222e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664f54c
10222e6
71c1d82
 
664f54c
 
 
10222e6
 
 
 
 
664f54c
 
10222e6
7b82b4c
10222e6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-segmentation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/sinet/web-assets/model_demo.png)

# SINet: Optimized for Mobile Deployment
## Lightweight portrait segmentation for background removal


SINet is a machine learning model that is designed to segment people from close-up portrait images in real time.

This model is an implementation of SINet found [here](https://github.com/clovaai/ext_portrait_segmentation).


This repository provides scripts to run SINet on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/sinet).


### Model Details

- **Model Type:** Model_use_case.semantic_segmentation
- **Model Stats:**
  - Model checkpoint: SINet.pth
  - Input resolution: 224x224
  - Number of output classes: 2 (foreground / background)
  - Number of parameters: 91.9K
  - Model size (float): 415 KB
  - Model size (w8a8): 241 KB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| SINet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.625 ms | 0 - 17 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.44 ms | 0 - 18 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.805 ms | 0 - 27 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.32 ms | 1 - 34 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.62 ms | 0 - 7 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.591 ms | 1 - 9 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.088 ms | 0 - 17 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.009 ms | 0 - 19 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.625 ms | 0 - 17 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.44 ms | 0 - 18 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.617 ms | 0 - 6 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.593 ms | 1 - 8 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.374 ms | 0 - 19 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.371 ms | 1 - 26 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.616 ms | 0 - 7 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.596 ms | 1 - 8 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.088 ms | 0 - 17 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.009 ms | 0 - 19 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.616 ms | 0 - 7 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.595 ms | 1 - 7 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.12 ms | 0 - 9 MB | NPU | [SINet.onnx](https://huggingface.co/qualcomm/SINet/blob/main/SINet.onnx) |
| SINet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.085 ms | 0 - 32 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.07 ms | 0 - 35 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.36 ms | 0 - 28 MB | NPU | [SINet.onnx](https://huggingface.co/qualcomm/SINet/blob/main/SINet.onnx) |
| SINet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.995 ms | 0 - 18 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet.tflite) |
| SINet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.98 ms | 1 - 24 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.099 ms | 1 - 24 MB | NPU | [SINet.onnx](https://huggingface.co/qualcomm/SINet/blob/main/SINet.onnx) |
| SINet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.208 ms | 0 - 0 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet.dlc) |
| SINet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.277 ms | 2 - 2 MB | NPU | [SINet.onnx](https://huggingface.co/qualcomm/SINet/blob/main/SINet.onnx) |
| SINet | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.398 ms | 0 - 18 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.536 ms | 0 - 18 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.294 ms | 0 - 35 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.445 ms | 0 - 32 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.185 ms | 0 - 8 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.292 ms | 0 - 8 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.462 ms | 0 - 19 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.531 ms | 0 - 18 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 18.804 ms | 0 - 21 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.398 ms | 0 - 18 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.536 ms | 0 - 18 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.183 ms | 0 - 7 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.29 ms | 0 - 7 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.75 ms | 0 - 21 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.898 ms | 0 - 24 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.179 ms | 0 - 8 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.283 ms | 0 - 8 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.462 ms | 0 - 19 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.531 ms | 0 - 18 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.184 ms | 0 - 7 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.287 ms | 0 - 9 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 7.124 ms | 4 - 16 MB | NPU | [SINet.onnx](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.onnx) |
| SINet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.823 ms | 0 - 26 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.897 ms | 0 - 29 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.272 ms | 6 - 26 MB | NPU | [SINet.onnx](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.onnx) |
| SINet | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.66 ms | 0 - 26 MB | NPU | [SINet.tflite](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.tflite) |
| SINet | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.679 ms | 0 - 28 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 5.172 ms | 5 - 24 MB | NPU | [SINet.onnx](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.onnx) |
| SINet | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.496 ms | 0 - 0 MB | NPU | [SINet.dlc](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.dlc) |
| SINet | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.685 ms | 6 - 6 MB | NPU | [SINet.onnx](https://huggingface.co/qualcomm/SINet/blob/main/SINet_w8a8.onnx) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.sinet.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.sinet.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.sinet.export
```
```
Profiling Results
------------------------------------------------------------
SINet
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : TFLITE                               
Estimated inference time (ms)   : 3.6                                  
Estimated peak memory usage (MB): [0, 17]                              
Total # Ops                     : 222                                  
Compute Unit(s)                 : npu (222 ops) gpu (0 ops) cpu (0 ops)
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/sinet/qai_hub_models/models/SINet/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.sinet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.sinet.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.sinet.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on SINet's performance across various devices [here](https://aihub.qualcomm.com/models/sinet).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of SINet can be found
  [here](https://github.com/clovaai/ext_portrait_segmentation/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder](https://arxiv.org/abs/1911.09099)
* [Source Model Implementation](https://github.com/clovaai/ext_portrait_segmentation)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).