Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -37,39 +37,39 @@ More details on model performance across various devices, can be found
|
|
37 |
|
38 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
-
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE |
|
41 |
-
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN |
|
42 |
-
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX |
|
43 |
-
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE |
|
44 |
-
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN |
|
45 |
-
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 115.
|
46 |
-
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
47 |
-
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 103.
|
48 |
-
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX |
|
49 |
-
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE |
|
50 |
-
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN |
|
51 |
-
| Unet-Segmentation | SA7255P ADP | SA7255P | TFLITE |
|
52 |
-
| Unet-Segmentation | SA7255P ADP | SA7255P | QNN | 7399.
|
53 |
-
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE |
|
54 |
-
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN |
|
55 |
-
| Unet-Segmentation | SA8295P ADP | SA8295P | TFLITE | 273.
|
56 |
-
| Unet-Segmentation | SA8295P ADP | SA8295P | QNN | 266.
|
57 |
-
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE |
|
58 |
-
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN |
|
59 |
-
| Unet-Segmentation | SA8775P ADP | SA8775P | TFLITE | 303.
|
60 |
-
| Unet-Segmentation | SA8775P ADP | SA8775P | QNN | 297.
|
61 |
-
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE |
|
62 |
-
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN |
|
63 |
-
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 135.
|
64 |
-
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 147.
|
65 |
|
66 |
|
67 |
|
68 |
|
69 |
## Installation
|
70 |
|
71 |
-
This model can be installed as a Python package via pip.
|
72 |
|
|
|
73 |
```bash
|
74 |
pip install qai-hub-models
|
75 |
```
|
@@ -125,8 +125,8 @@ Profiling Results
|
|
125 |
Unet-Segmentation
|
126 |
Device : Samsung Galaxy S23 (13)
|
127 |
Runtime : TFLITE
|
128 |
-
Estimated inference time (ms) :
|
129 |
-
Estimated peak memory usage (MB): [6,
|
130 |
Total # Ops : 32
|
131 |
Compute Unit(s) : NPU (32 ops)
|
132 |
```
|
@@ -153,7 +153,7 @@ from qai_hub_models.models.unet_segmentation import Model
|
|
153 |
torch_model = Model.from_pretrained()
|
154 |
|
155 |
# Device
|
156 |
-
device = hub.Device("Samsung Galaxy
|
157 |
|
158 |
# Trace model
|
159 |
input_shape = torch_model.get_input_spec()
|
@@ -245,7 +245,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
245 |
|
246 |
|
247 |
## License
|
248 |
-
* The license for the original implementation of Unet-Segmentation can be found
|
|
|
249 |
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE)
|
250 |
|
251 |
|
|
|
37 |
|
38 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
+
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 150.589 ms | 6 - 471 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
41 |
+
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 145.477 ms | 10 - 34 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
|
42 |
+
| Unet-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 159.383 ms | 12 - 147 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
|
43 |
+
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 114.876 ms | 4 - 91 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
44 |
+
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 110.798 ms | 190 - 273 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so) |
|
45 |
+
| Unet-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 115.502 ms | 65 - 158 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
|
46 |
+
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 103.261 ms | 6 - 108 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
47 |
+
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 103.316 ms | 9 - 111 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| Unet-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 92.909 ms | 23 - 131 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
|
49 |
+
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 157.35 ms | 6 - 120 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
50 |
+
| Unet-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 148.092 ms | 10 - 12 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| Unet-Segmentation | SA7255P ADP | SA7255P | TFLITE | 7407.448 ms | 2 - 99 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
52 |
+
| Unet-Segmentation | SA7255P ADP | SA7255P | QNN | 7399.837 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 160.985 ms | 5 - 232 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
54 |
+
| Unet-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 142.971 ms | 9 - 12 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| Unet-Segmentation | SA8295P ADP | SA8295P | TFLITE | 273.532 ms | 6 - 106 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
56 |
+
| Unet-Segmentation | SA8295P ADP | SA8295P | QNN | 266.162 ms | 0 - 15 MB | FP16 | NPU | Use Export Script |
|
57 |
+
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 151.188 ms | 6 - 469 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
58 |
+
| Unet-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 138.876 ms | 10 - 12 MB | FP16 | NPU | Use Export Script |
|
59 |
+
| Unet-Segmentation | SA8775P ADP | SA8775P | TFLITE | 303.256 ms | 6 - 104 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
60 |
+
| Unet-Segmentation | SA8775P ADP | SA8775P | QNN | 297.867 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
|
61 |
+
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 279.615 ms | 6 - 94 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite) |
|
62 |
+
| Unet-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 286.728 ms | 3 - 92 MB | FP16 | NPU | Use Export Script |
|
63 |
+
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 135.697 ms | 9 - 9 MB | FP16 | NPU | Use Export Script |
|
64 |
+
| Unet-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 147.415 ms | 54 - 54 MB | FP16 | NPU | [Unet-Segmentation.onnx](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.onnx) |
|
65 |
|
66 |
|
67 |
|
68 |
|
69 |
## Installation
|
70 |
|
|
|
71 |
|
72 |
+
Install the package via pip:
|
73 |
```bash
|
74 |
pip install qai-hub-models
|
75 |
```
|
|
|
125 |
Unet-Segmentation
|
126 |
Device : Samsung Galaxy S23 (13)
|
127 |
Runtime : TFLITE
|
128 |
+
Estimated inference time (ms) : 150.6
|
129 |
+
Estimated peak memory usage (MB): [6, 471]
|
130 |
Total # Ops : 32
|
131 |
Compute Unit(s) : NPU (32 ops)
|
132 |
```
|
|
|
153 |
torch_model = Model.from_pretrained()
|
154 |
|
155 |
# Device
|
156 |
+
device = hub.Device("Samsung Galaxy S24")
|
157 |
|
158 |
# Trace model
|
159 |
input_shape = torch_model.get_input_spec()
|
|
|
245 |
|
246 |
|
247 |
## License
|
248 |
+
* The license for the original implementation of Unet-Segmentation can be found
|
249 |
+
[here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE).
|
250 |
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE)
|
251 |
|
252 |
|