radinplaid commited on
Commit
973f3e9
·
verified ·
1 Parent(s): b0cdb5c

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - is
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.is-en
10
+ model-index:
11
+ - name: quickmt-en-is
12
+ results:
13
+ - task:
14
+ name: Translation eng-isl
15
+ type: translation
16
+ args: isl-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn isl_Latn
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 25.85
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 53.31
28
+ - name: COMET
29
+ type: comet
30
+ value: 80.89
31
+ ---
32
+
33
+
34
+ # `quickmt-en-is` Neural Machine Translation Model
35
+
36
+ `quickmt-en-is` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `is`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 32k separate Sentencepiece vocabs
49
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+
51
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
52
+
53
+
54
+ ## Usage with `quickmt`
55
+
56
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
57
+
58
+ Next, install the `quickmt` python library and download the model:
59
+
60
+ ```bash
61
+ git clone https://github.com/quickmt/quickmt.git
62
+ pip install ./quickmt/
63
+
64
+ quickmt-model-download quickmt/quickmt-en-is ./quickmt-en-is
65
+ ```
66
+
67
+ Finally use the model in python:
68
+
69
+ ```python
70
+ from quickmt import Translator
71
+
72
+ # Auto-detects GPU, set to "cpu" to force CPU inference
73
+ t = Translator("./quickmt-en-is/", device="auto")
74
+
75
+ # Translate - set beam size to 1 for faster speed (but lower quality)
76
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
77
+
78
+ t(sample_text, beam_size=5)
79
+ ```
80
+
81
+ > 'Ehud Ur, prófessor í læknisfræði við Dalhousie háskólann í Halifax, Nova Scotia og formaður klínískrar og vísindalegrar deildar kanadísku sykursýkisamtakanna varaði við því að rannsóknin væri enn á fyrstu dögum.'
82
+
83
+ ```python
84
+ # Get alternative translations by sampling
85
+ # You can pass any cTranslate2 `translate_batch` arguments
86
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
87
+ ```
88
+
89
+ > 'Ehud Ur, prófessor í lyflækninga við Dalhousie Háskólann í Halifax, Nova Scotia, og formaður klínískrar og vísindalegrar deildar kanadísku sykursýkisamtakanna varaði við því að rannsóknarinnar væri enn á frumdögum.'
90
+
91
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
92
+
93
+
94
+ ## Metrics
95
+
96
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"isl_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
97
+
98
+ | | bleu | chrf2 | comet22 | Time (s) |
99
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
100
+ | quickmt/quickmt-en-is | 25.85 | 53.31 | 80.89 | 1.75 |
101
+ | Helsinki-NLP/opus-mt-en-is | 18.57 | 46.63 | 76.47 | 3.93 |
102
+ | facebook/nllb-200-distilled-600M | 19.8 | 47.44 | 81.45 | 26.36 |
103
+ | facebook/nllb-200-distilled-1.3B | 23.04 | 50.93 | 84.15 | 46.58 |
104
+ | facebook/m2m100_418M | 11.93 | 37.46 | 63.74 | 22.54 |
105
+ | facebook/m2m100_1.2B | 17.52 | 45.25 | 77.38 | 45.06 |
.ipynb_checkpoints/eole-config-checkpoint.yaml ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: is.eole.vocab
13
+ src_vocab_size: 32000
14
+ tgt_vocab_size: 32000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.is-en/en
22
+ path_tgt: hf://quickmt/quickmt-train.is-en/is
23
+ path_sco: hf://quickmt/quickmt-train.is-en/sco
24
+ valid:
25
+ path_src: valid.en
26
+ path_tgt: valid.is
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "en.spm.model"
32
+ tgt_subword_model: "is.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: quickmt-en-is-eole-model
40
+ keep_checkpoint: 4
41
+ train_steps: 60000
42
+ save_checkpoint_steps: 5000
43
+ valid_steps: 5000
44
+
45
+ # Train on a single GPU
46
+ world_size: 1
47
+ gpu_ranks: [0]
48
+
49
+ # Batching 10240
50
+ batch_type: "tokens"
51
+ batch_size: 6000
52
+ valid_batch_size: 2048
53
+ batch_size_multiple: 8
54
+ accum_count: [20]
55
+ accum_steps: [0]
56
+
57
+ # Optimizer & Compute
58
+ compute_dtype: "fp16"
59
+ optim: "adamw"
60
+ #use_amp: False
61
+ learning_rate: 3.0
62
+ warmup_steps: 5000
63
+ decay_method: "noam"
64
+ adam_beta2: 0.998
65
+
66
+ # Data loading
67
+ bucket_size: 128000
68
+ num_workers: 4
69
+ prefetch_factor: 32
70
+
71
+ # Hyperparams
72
+ dropout_steps: [0]
73
+ dropout: [0.1]
74
+ attention_dropout: [0.1]
75
+ max_grad_norm: 0
76
+ label_smoothing: 0.1
77
+ average_decay: 0.0001
78
+ param_init_method: xavier_uniform
79
+ normalization: "tokens"
80
+
81
+ model:
82
+ architecture: "transformer"
83
+ share_embeddings: false
84
+ share_decoder_embeddings: true
85
+ hidden_size: 1024
86
+ encoder:
87
+ layers: 8
88
+ decoder:
89
+ layers: 2
90
+ heads: 8
91
+ transformer_ff: 4096
92
+ embeddings:
93
+ word_vec_size: 1024
94
+ position_encoding_type: "SinusoidalInterleaved"
95
+
README.md CHANGED
@@ -1,3 +1,105 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - is
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.is-en
10
+ model-index:
11
+ - name: quickmt-en-is
12
+ results:
13
+ - task:
14
+ name: Translation eng-isl
15
+ type: translation
16
+ args: isl-eng
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn isl_Latn
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 25.85
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 53.31
28
+ - name: COMET
29
+ type: comet
30
+ value: 80.89
31
+ ---
32
+
33
+
34
+ # `quickmt-en-is` Neural Machine Translation Model
35
+
36
+ `quickmt-en-is` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `is`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 32k separate Sentencepiece vocabs
49
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+
51
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
52
+
53
+
54
+ ## Usage with `quickmt`
55
+
56
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
57
+
58
+ Next, install the `quickmt` python library and download the model:
59
+
60
+ ```bash
61
+ git clone https://github.com/quickmt/quickmt.git
62
+ pip install ./quickmt/
63
+
64
+ quickmt-model-download quickmt/quickmt-en-is ./quickmt-en-is
65
+ ```
66
+
67
+ Finally use the model in python:
68
+
69
+ ```python
70
+ from quickmt import Translator
71
+
72
+ # Auto-detects GPU, set to "cpu" to force CPU inference
73
+ t = Translator("./quickmt-en-is/", device="auto")
74
+
75
+ # Translate - set beam size to 1 for faster speed (but lower quality)
76
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
77
+
78
+ t(sample_text, beam_size=5)
79
+ ```
80
+
81
+ > 'Ehud Ur, prófessor í læknisfræði við Dalhousie háskólann í Halifax, Nova Scotia og formaður klínískrar og vísindalegrar deildar kanadísku sykursýkisamtakanna varaði við því að rannsóknin væri enn á fyrstu dögum.'
82
+
83
+ ```python
84
+ # Get alternative translations by sampling
85
+ # You can pass any cTranslate2 `translate_batch` arguments
86
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
87
+ ```
88
+
89
+ > 'Ehud Ur, prófessor í lyflækninga við Dalhousie Háskólann í Halifax, Nova Scotia, og formaður klínískrar og vísindalegrar deildar kanadísku sykursýkisamtakanna varaði við því að rannsóknarinnar væri enn á frumdögum.'
90
+
91
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
92
+
93
+
94
+ ## Metrics
95
+
96
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"isl_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
97
+
98
+ | | bleu | chrf2 | comet22 | Time (s) |
99
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
100
+ | quickmt/quickmt-en-is | 25.85 | 53.31 | 80.89 | 1.75 |
101
+ | Helsinki-NLP/opus-mt-en-is | 18.57 | 46.63 | 76.47 | 3.93 |
102
+ | facebook/nllb-200-distilled-600M | 19.8 | 47.44 | 81.45 | 26.36 |
103
+ | facebook/nllb-200-distilled-1.3B | 23.04 | 50.93 | 84.15 | 46.58 |
104
+ | facebook/m2m100_418M | 11.93 | 37.46 | 63.74 | 22.54 |
105
+ | facebook/m2m100_1.2B | 17.52 | 45.25 | 77.38 | 45.06 |
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: is.eole.vocab
13
+ src_vocab_size: 32000
14
+ tgt_vocab_size: 32000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.is-en/en
22
+ path_tgt: hf://quickmt/quickmt-train.is-en/is
23
+ path_sco: hf://quickmt/quickmt-train.is-en/sco
24
+ valid:
25
+ path_src: valid.en
26
+ path_tgt: valid.is
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "en.spm.model"
32
+ tgt_subword_model: "is.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: quickmt-en-is-eole-model
40
+ keep_checkpoint: 4
41
+ train_steps: 60000
42
+ save_checkpoint_steps: 5000
43
+ valid_steps: 5000
44
+
45
+ # Train on a single GPU
46
+ world_size: 1
47
+ gpu_ranks: [0]
48
+
49
+ # Batching 10240
50
+ batch_type: "tokens"
51
+ batch_size: 6000
52
+ valid_batch_size: 2048
53
+ batch_size_multiple: 8
54
+ accum_count: [20]
55
+ accum_steps: [0]
56
+
57
+ # Optimizer & Compute
58
+ compute_dtype: "fp16"
59
+ optim: "adamw"
60
+ #use_amp: False
61
+ learning_rate: 3.0
62
+ warmup_steps: 5000
63
+ decay_method: "noam"
64
+ adam_beta2: 0.998
65
+
66
+ # Data loading
67
+ bucket_size: 128000
68
+ num_workers: 4
69
+ prefetch_factor: 32
70
+
71
+ # Hyperparams
72
+ dropout_steps: [0]
73
+ dropout: [0.1]
74
+ attention_dropout: [0.1]
75
+ max_grad_norm: 0
76
+ label_smoothing: 0.1
77
+ average_decay: 0.0001
78
+ param_init_method: xavier_uniform
79
+ normalization: "tokens"
80
+
81
+ model:
82
+ architecture: "transformer"
83
+ share_embeddings: false
84
+ share_decoder_embeddings: true
85
+ hidden_size: 1024
86
+ encoder:
87
+ layers: 8
88
+ decoder:
89
+ layers: 2
90
+ heads: 8
91
+ transformer_ff: 4096
92
+ embeddings:
93
+ word_vec_size: 1024
94
+ position_encoding_type: "SinusoidalInterleaved"
95
+
eole-model/config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size_multiple": 8,
3
+ "n_sample": 0,
4
+ "src_vocab": "en.eole.vocab",
5
+ "tgt_vocab_size": 32000,
6
+ "save_data": "data",
7
+ "tensorboard": true,
8
+ "tensorboard_log_dir": "tensorboard",
9
+ "overwrite": true,
10
+ "transforms": [
11
+ "sentencepiece",
12
+ "filtertoolong"
13
+ ],
14
+ "report_every": 100,
15
+ "tensorboard_log_dir_dated": "tensorboard/Nov-18_22-06-12",
16
+ "seed": 1234,
17
+ "valid_metrics": [
18
+ "BLEU"
19
+ ],
20
+ "tgt_vocab": "is.eole.vocab",
21
+ "share_vocab": false,
22
+ "src_vocab_size": 32000,
23
+ "training": {
24
+ "warmup_steps": 5000,
25
+ "attention_dropout": [
26
+ 0.1
27
+ ],
28
+ "prefetch_factor": 32,
29
+ "average_decay": 0.0001,
30
+ "accum_count": [
31
+ 20
32
+ ],
33
+ "gpu_ranks": [
34
+ 0
35
+ ],
36
+ "dropout_steps": [
37
+ 0
38
+ ],
39
+ "model_path": "quickmt-en-is-eole-model",
40
+ "accum_steps": [
41
+ 0
42
+ ],
43
+ "optim": "adamw",
44
+ "batch_size": 6000,
45
+ "keep_checkpoint": 4,
46
+ "save_checkpoint_steps": 5000,
47
+ "param_init_method": "xavier_uniform",
48
+ "batch_size_multiple": 8,
49
+ "world_size": 1,
50
+ "compute_dtype": "torch.float16",
51
+ "normalization": "tokens",
52
+ "decay_method": "noam",
53
+ "bucket_size": 128000,
54
+ "learning_rate": 3.0,
55
+ "valid_steps": 5000,
56
+ "max_grad_norm": 0.0,
57
+ "train_steps": 100000,
58
+ "adam_beta2": 0.998,
59
+ "num_workers": 0,
60
+ "dropout": [
61
+ 0.1
62
+ ],
63
+ "valid_batch_size": 2048,
64
+ "batch_type": "tokens",
65
+ "label_smoothing": 0.1
66
+ },
67
+ "data": {
68
+ "corpus_1": {
69
+ "path_src": "train_cefiltered5.en",
70
+ "path_tgt": "train_cefiltered5.is",
71
+ "transforms": [
72
+ "sentencepiece",
73
+ "filtertoolong"
74
+ ],
75
+ "path_align": null
76
+ },
77
+ "valid": {
78
+ "path_src": "valid.en",
79
+ "path_tgt": "valid.is",
80
+ "transforms": [
81
+ "sentencepiece",
82
+ "filtertoolong"
83
+ ],
84
+ "path_align": null
85
+ }
86
+ },
87
+ "transforms_configs": {
88
+ "sentencepiece": {
89
+ "tgt_subword_model": "${MODEL_PATH}/is.spm.model",
90
+ "src_subword_model": "${MODEL_PATH}/en.spm.model"
91
+ },
92
+ "filtertoolong": {
93
+ "tgt_seq_length": 256,
94
+ "src_seq_length": 256
95
+ }
96
+ },
97
+ "model": {
98
+ "hidden_size": 1024,
99
+ "share_decoder_embeddings": true,
100
+ "architecture": "transformer",
101
+ "position_encoding_type": "SinusoidalInterleaved",
102
+ "heads": 8,
103
+ "share_embeddings": false,
104
+ "transformer_ff": 4096,
105
+ "encoder": {
106
+ "hidden_size": 1024,
107
+ "position_encoding_type": "SinusoidalInterleaved",
108
+ "heads": 8,
109
+ "layers": 8,
110
+ "encoder_type": "transformer",
111
+ "src_word_vec_size": 1024,
112
+ "transformer_ff": 4096,
113
+ "n_positions": null
114
+ },
115
+ "embeddings": {
116
+ "src_word_vec_size": 1024,
117
+ "word_vec_size": 1024,
118
+ "position_encoding_type": "SinusoidalInterleaved",
119
+ "tgt_word_vec_size": 1024
120
+ },
121
+ "decoder": {
122
+ "hidden_size": 1024,
123
+ "position_encoding_type": "SinusoidalInterleaved",
124
+ "heads": 8,
125
+ "layers": 2,
126
+ "n_positions": null,
127
+ "decoder_type": "transformer",
128
+ "transformer_ff": 4096,
129
+ "tgt_word_vec_size": 1024
130
+ }
131
+ }
132
+ }
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac985ba45c9ec783ae106ecde3c5873db2c14e4a1e76086e1eaf7d48295e9b0f
3
+ size 800209
eole-model/is.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:538f374f5558509c152305b8efbea6cc87daa58cfd52dea3bb962c0ad908c797
3
+ size 814659
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31bb3f14756ff081a38f956d1cfaaec0ed520ddbec4536cb40aca0087a1a4e9d
3
+ size 840314816
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4bab03bb029b7e503b0aabd0ff6bde9051c21019e013847fab4d62d509cd0f8
3
+ size 409915789
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac985ba45c9ec783ae106ecde3c5873db2c14e4a1e76086e1eaf7d48295e9b0f
3
+ size 800209
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:538f374f5558509c152305b8efbea6cc87daa58cfd52dea3bb962c0ad908c797
3
+ size 814659