Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +108 -0
- README.md +108 -3
- config.json +10 -0
- eole-config.yaml +101 -0
- eole-model/config.json +143 -0
- eole-model/en.spm.model +3 -0
- eole-model/is.spm.model +3 -0
- eole-model/model.00.safetensors +3 -0
- eole-model/vocab.json +0 -0
- model.bin +3 -0
- source_vocabulary.json +0 -0
- src.spm.model +3 -0
- target_vocabulary.json +0 -0
- tgt.spm.model +3 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- is
|
| 5 |
+
tags:
|
| 6 |
+
- translation
|
| 7 |
+
license: cc-by-4.0
|
| 8 |
+
datasets:
|
| 9 |
+
- quickmt/quickmt-train.is-en
|
| 10 |
+
model-index:
|
| 11 |
+
- name: quickmt-is-en
|
| 12 |
+
results:
|
| 13 |
+
- task:
|
| 14 |
+
name: Translation isl-eng
|
| 15 |
+
type: translation
|
| 16 |
+
args: isl-eng
|
| 17 |
+
dataset:
|
| 18 |
+
name: flores101-devtest
|
| 19 |
+
type: flores_101
|
| 20 |
+
args: isl_Latn eng_Latn devtest
|
| 21 |
+
metrics:
|
| 22 |
+
- name: BLEU
|
| 23 |
+
type: bleu
|
| 24 |
+
value: 34.76
|
| 25 |
+
- name: CHRF
|
| 26 |
+
type: chrf
|
| 27 |
+
value: 60.13
|
| 28 |
+
- name: COMET
|
| 29 |
+
type: comet
|
| 30 |
+
value: 85.39
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# `quickmt-is-en` Neural Machine Translation Model
|
| 35 |
+
|
| 36 |
+
`quickmt-is-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `is` into `en`.
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Try it on our Huggingface Space
|
| 40 |
+
|
| 41 |
+
Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Model Information
|
| 45 |
+
|
| 46 |
+
* Trained using [`eole`](https://github.com/eole-nlp/eole)
|
| 47 |
+
* 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
|
| 48 |
+
* 32k separate Sentencepiece vocabs
|
| 49 |
+
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
|
| 50 |
+
* The pytorch model (for use with [`eole`](https://github.com/eole-nlp/eole)) is available in this repository in the `eole-model` folder
|
| 51 |
+
|
| 52 |
+
See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
## Usage with `quickmt`
|
| 56 |
+
|
| 57 |
+
You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
|
| 58 |
+
|
| 59 |
+
Next, install the `quickmt` python library and download the model:
|
| 60 |
+
|
| 61 |
+
```bash
|
| 62 |
+
git clone https://github.com/quickmt/quickmt.git
|
| 63 |
+
pip install ./quickmt/
|
| 64 |
+
|
| 65 |
+
quickmt-model-download quickmt/quickmt-is-en ./quickmt-is-en
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
Finally use the model in python:
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from quickmt import Translator
|
| 72 |
+
|
| 73 |
+
# Auto-detects GPU, set to "cpu" to force CPU inference
|
| 74 |
+
t = Translator("./quickmt-is-en/", device="auto")
|
| 75 |
+
|
| 76 |
+
# Translate - set beam size to 1 for faster speed (but lower quality)
|
| 77 |
+
sample_text = 'Dr. Ehud Ur, læknaprófessor við Dalhousie-háskólann í Halifax í Nova Scotia og formaður klínískrar vísindadeildar Kanadíska sykursýkissambandsins, minnti á að rannsóknin væri rétt nýhafin.'
|
| 78 |
+
|
| 79 |
+
t(sample_text, beam_size=5)
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
> 'Dr. Ehud Ur, a medical professor at Dalhousie University in Halifax, Nova Scotia, and chair of the clinical science department of the Canadian Diabetes Association, recalled that the study had just begun.'
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
# Get alternative translations by sampling
|
| 86 |
+
# You can pass any cTranslate2 `translate_batch` arguments
|
| 87 |
+
t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
> 'Dr Ehud Ur, a medical professor at Dalhousie University in Halifax, Nova Scotia and chair of the clinical science section of the Canadian Diabetes Union, mentioned that the investigation was just beginning.'
|
| 91 |
+
|
| 92 |
+
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
## Metrics
|
| 96 |
+
|
| 97 |
+
`bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("isl_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32.
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
| | bleu | chrf2 | comet22 | Time (s) |
|
| 101 |
+
|:---------------------------------|-------:|--------:|----------:|-----------:|
|
| 102 |
+
| quickmt/quickmt-is-en | 34.76 | 60.13 | 85.39 | 1.22 |
|
| 103 |
+
| Helsinki-NLP/opus-mt-is-en | 25.91 | 52.03 | 79.99 | 3.5 |
|
| 104 |
+
| facebook/nllb-200-distilled-600M | 30.13 | 54.77 | 82.23 | 21.3 |
|
| 105 |
+
| facebook/nllb-200-distilled-1.3B | 33.71 | 57.73 | 84.71 | 37.21 |
|
| 106 |
+
| facebook/m2m100_418M | 20.38 | 46.47 | 70.95 | 18.8 |
|
| 107 |
+
| facebook/m2m100_1.2B | 28.89 | 54.54 | 81.09 | 34.72 |
|
| 108 |
+
|
README.md
CHANGED
|
@@ -1,3 +1,108 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- is
|
| 5 |
+
tags:
|
| 6 |
+
- translation
|
| 7 |
+
license: cc-by-4.0
|
| 8 |
+
datasets:
|
| 9 |
+
- quickmt/quickmt-train.is-en
|
| 10 |
+
model-index:
|
| 11 |
+
- name: quickmt-is-en
|
| 12 |
+
results:
|
| 13 |
+
- task:
|
| 14 |
+
name: Translation isl-eng
|
| 15 |
+
type: translation
|
| 16 |
+
args: isl-eng
|
| 17 |
+
dataset:
|
| 18 |
+
name: flores101-devtest
|
| 19 |
+
type: flores_101
|
| 20 |
+
args: isl_Latn eng_Latn devtest
|
| 21 |
+
metrics:
|
| 22 |
+
- name: BLEU
|
| 23 |
+
type: bleu
|
| 24 |
+
value: 34.76
|
| 25 |
+
- name: CHRF
|
| 26 |
+
type: chrf
|
| 27 |
+
value: 60.13
|
| 28 |
+
- name: COMET
|
| 29 |
+
type: comet
|
| 30 |
+
value: 85.39
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# `quickmt-is-en` Neural Machine Translation Model
|
| 35 |
+
|
| 36 |
+
`quickmt-is-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `is` into `en`.
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Try it on our Huggingface Space
|
| 40 |
+
|
| 41 |
+
Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Model Information
|
| 45 |
+
|
| 46 |
+
* Trained using [`eole`](https://github.com/eole-nlp/eole)
|
| 47 |
+
* 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
|
| 48 |
+
* 32k separate Sentencepiece vocabs
|
| 49 |
+
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
|
| 50 |
+
* The pytorch model (for use with [`eole`](https://github.com/eole-nlp/eole)) is available in this repository in the `eole-model` folder
|
| 51 |
+
|
| 52 |
+
See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
## Usage with `quickmt`
|
| 56 |
+
|
| 57 |
+
You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
|
| 58 |
+
|
| 59 |
+
Next, install the `quickmt` python library and download the model:
|
| 60 |
+
|
| 61 |
+
```bash
|
| 62 |
+
git clone https://github.com/quickmt/quickmt.git
|
| 63 |
+
pip install ./quickmt/
|
| 64 |
+
|
| 65 |
+
quickmt-model-download quickmt/quickmt-is-en ./quickmt-is-en
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
Finally use the model in python:
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from quickmt import Translator
|
| 72 |
+
|
| 73 |
+
# Auto-detects GPU, set to "cpu" to force CPU inference
|
| 74 |
+
t = Translator("./quickmt-is-en/", device="auto")
|
| 75 |
+
|
| 76 |
+
# Translate - set beam size to 1 for faster speed (but lower quality)
|
| 77 |
+
sample_text = 'Dr. Ehud Ur, læknaprófessor við Dalhousie-háskólann í Halifax í Nova Scotia og formaður klínískrar vísindadeildar Kanadíska sykursýkissambandsins, minnti á að rannsóknin væri rétt nýhafin.'
|
| 78 |
+
|
| 79 |
+
t(sample_text, beam_size=5)
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
> 'Dr. Ehud Ur, a medical professor at Dalhousie University in Halifax, Nova Scotia, and chair of the clinical science department of the Canadian Diabetes Association, recalled that the study had just begun.'
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
# Get alternative translations by sampling
|
| 86 |
+
# You can pass any cTranslate2 `translate_batch` arguments
|
| 87 |
+
t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
> 'Dr Ehud Ur, a medical professor at Dalhousie University in Halifax, Nova Scotia and chair of the clinical science section of the Canadian Diabetes Union, mentioned that the investigation was just beginning.'
|
| 91 |
+
|
| 92 |
+
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
## Metrics
|
| 96 |
+
|
| 97 |
+
`bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("isl_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32.
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
| | bleu | chrf2 | comet22 | Time (s) |
|
| 101 |
+
|:---------------------------------|-------:|--------:|----------:|-----------:|
|
| 102 |
+
| quickmt/quickmt-is-en | 34.76 | 60.13 | 85.39 | 1.22 |
|
| 103 |
+
| Helsinki-NLP/opus-mt-is-en | 25.91 | 52.03 | 79.99 | 3.5 |
|
| 104 |
+
| facebook/nllb-200-distilled-600M | 30.13 | 54.77 | 82.23 | 21.3 |
|
| 105 |
+
| facebook/nllb-200-distilled-1.3B | 33.71 | 57.73 | 84.71 | 37.21 |
|
| 106 |
+
| facebook/m2m100_418M | 20.38 | 46.47 | 70.95 | 18.8 |
|
| 107 |
+
| facebook/m2m100_1.2B | 28.89 | 54.54 | 81.09 | 34.72 |
|
| 108 |
+
|
config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_source_bos": false,
|
| 3 |
+
"add_source_eos": false,
|
| 4 |
+
"bos_token": "<s>",
|
| 5 |
+
"decoder_start_token": "<s>",
|
| 6 |
+
"eos_token": "</s>",
|
| 7 |
+
"layer_norm_epsilon": 1e-06,
|
| 8 |
+
"multi_query_attention": false,
|
| 9 |
+
"unk_token": "<unk>"
|
| 10 |
+
}
|
eole-config.yaml
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## IO
|
| 2 |
+
save_data: data
|
| 3 |
+
overwrite: True
|
| 4 |
+
seed: 1234
|
| 5 |
+
report_every: 100
|
| 6 |
+
valid_metrics: ["BLEU"]
|
| 7 |
+
tensorboard: true
|
| 8 |
+
tensorboard_log_dir: tensorboard
|
| 9 |
+
|
| 10 |
+
### Vocab
|
| 11 |
+
src_vocab: is.eole.vocab
|
| 12 |
+
tgt_vocab: en.eole.vocab
|
| 13 |
+
src_vocab_size: 32000
|
| 14 |
+
tgt_vocab_size: 32000
|
| 15 |
+
vocab_size_multiple: 8
|
| 16 |
+
share_vocab: false
|
| 17 |
+
n_sample: 0
|
| 18 |
+
|
| 19 |
+
data:
|
| 20 |
+
corpus_1:
|
| 21 |
+
path_src: hf://quickmt/quickmt-train.is-en/en
|
| 22 |
+
path_tgt: hf://quickmt/quickmt-train.is-en/is
|
| 23 |
+
path_sco: hf://quickmt/quickmt-train.is-en/sco
|
| 24 |
+
weight: 9
|
| 25 |
+
corpus_2:
|
| 26 |
+
path_src: hf://quickmt/newscrawl2024-en-backtranslated-is/is
|
| 27 |
+
path_tgt: hf://quickmt/newscrawl2024-en-backtranslated-is/en
|
| 28 |
+
path_sco: hf://quickmt/newscrawl2024-en-backtranslated-is/sco
|
| 29 |
+
weight: 5
|
| 30 |
+
valid:
|
| 31 |
+
path_src: valid.is
|
| 32 |
+
path_tgt: valid.en
|
| 33 |
+
|
| 34 |
+
transforms: [sentencepiece, filtertoolong]
|
| 35 |
+
transforms_configs:
|
| 36 |
+
sentencepiece:
|
| 37 |
+
src_subword_model: "is.spm.model"
|
| 38 |
+
tgt_subword_model: "en.spm.model"
|
| 39 |
+
filtertoolong:
|
| 40 |
+
src_seq_length: 256
|
| 41 |
+
tgt_seq_length: 256
|
| 42 |
+
|
| 43 |
+
training:
|
| 44 |
+
# Run configuration
|
| 45 |
+
model_path: quickmt-is-en-eole-model
|
| 46 |
+
keep_checkpoint: 4
|
| 47 |
+
train_steps: 60000
|
| 48 |
+
save_checkpoint_steps: 5000
|
| 49 |
+
valid_steps: 5000
|
| 50 |
+
|
| 51 |
+
# Train on a single GPU
|
| 52 |
+
world_size: 1
|
| 53 |
+
gpu_ranks: [0]
|
| 54 |
+
|
| 55 |
+
# Batching 10240
|
| 56 |
+
batch_type: "tokens"
|
| 57 |
+
batch_size: 6000
|
| 58 |
+
valid_batch_size: 2048
|
| 59 |
+
batch_size_multiple: 8
|
| 60 |
+
accum_count: [20]
|
| 61 |
+
accum_steps: [0]
|
| 62 |
+
|
| 63 |
+
# Optimizer & Compute
|
| 64 |
+
compute_dtype: "fp16"
|
| 65 |
+
optim: "adamw"
|
| 66 |
+
#use_amp: False
|
| 67 |
+
learning_rate: 3.0
|
| 68 |
+
warmup_steps: 5000
|
| 69 |
+
decay_method: "noam"
|
| 70 |
+
adam_beta2: 0.998
|
| 71 |
+
|
| 72 |
+
# Data loading
|
| 73 |
+
bucket_size: 128000
|
| 74 |
+
num_workers: 4
|
| 75 |
+
prefetch_factor: 32
|
| 76 |
+
|
| 77 |
+
# Hyperparams
|
| 78 |
+
dropout_steps: [0]
|
| 79 |
+
dropout: [0.1]
|
| 80 |
+
attention_dropout: [0.1]
|
| 81 |
+
max_grad_norm: 0
|
| 82 |
+
label_smoothing: 0.1
|
| 83 |
+
average_decay: 0.0001
|
| 84 |
+
param_init_method: xavier_uniform
|
| 85 |
+
normalization: "tokens"
|
| 86 |
+
|
| 87 |
+
model:
|
| 88 |
+
architecture: "transformer"
|
| 89 |
+
share_embeddings: false
|
| 90 |
+
share_decoder_embeddings: true
|
| 91 |
+
hidden_size: 1024
|
| 92 |
+
encoder:
|
| 93 |
+
layers: 8
|
| 94 |
+
decoder:
|
| 95 |
+
layers: 2
|
| 96 |
+
heads: 8
|
| 97 |
+
transformer_ff: 4096
|
| 98 |
+
embeddings:
|
| 99 |
+
word_vec_size: 1024
|
| 100 |
+
position_encoding_type: "SinusoidalInterleaved"
|
| 101 |
+
|
eole-model/config.json
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n_sample": 0,
|
| 3 |
+
"tgt_vocab_size": 32000,
|
| 4 |
+
"tgt_vocab": "en.eole.vocab",
|
| 5 |
+
"tensorboard_log_dir_dated": "tensorboard/Nov-24_22-33-35",
|
| 6 |
+
"valid_metrics": [
|
| 7 |
+
"BLEU"
|
| 8 |
+
],
|
| 9 |
+
"src_vocab_size": 32000,
|
| 10 |
+
"save_data": "data",
|
| 11 |
+
"share_vocab": false,
|
| 12 |
+
"overwrite": true,
|
| 13 |
+
"report_every": 100,
|
| 14 |
+
"tensorboard": true,
|
| 15 |
+
"seed": 1234,
|
| 16 |
+
"src_vocab": "is.eole.vocab",
|
| 17 |
+
"vocab_size_multiple": 8,
|
| 18 |
+
"tensorboard_log_dir": "tensorboard",
|
| 19 |
+
"transforms": [
|
| 20 |
+
"sentencepiece",
|
| 21 |
+
"filtertoolong"
|
| 22 |
+
],
|
| 23 |
+
"training": {
|
| 24 |
+
"warmup_steps": 5000,
|
| 25 |
+
"label_smoothing": 0.1,
|
| 26 |
+
"attention_dropout": [
|
| 27 |
+
0.1
|
| 28 |
+
],
|
| 29 |
+
"decay_method": "noam",
|
| 30 |
+
"model_path": "quickmt-is-en-eole-model",
|
| 31 |
+
"compute_dtype": "torch.float16",
|
| 32 |
+
"dropout": [
|
| 33 |
+
0.1
|
| 34 |
+
],
|
| 35 |
+
"normalization": "tokens",
|
| 36 |
+
"dropout_steps": [
|
| 37 |
+
0
|
| 38 |
+
],
|
| 39 |
+
"param_init_method": "xavier_uniform",
|
| 40 |
+
"train_steps": 100000,
|
| 41 |
+
"adam_beta2": 0.998,
|
| 42 |
+
"max_grad_norm": 0.0,
|
| 43 |
+
"batch_type": "tokens",
|
| 44 |
+
"accum_count": [
|
| 45 |
+
20
|
| 46 |
+
],
|
| 47 |
+
"learning_rate": 3.0,
|
| 48 |
+
"num_workers": 0,
|
| 49 |
+
"accum_steps": [
|
| 50 |
+
0
|
| 51 |
+
],
|
| 52 |
+
"bucket_size": 128000,
|
| 53 |
+
"average_decay": 0.0001,
|
| 54 |
+
"batch_size": 6000,
|
| 55 |
+
"gpu_ranks": [
|
| 56 |
+
0
|
| 57 |
+
],
|
| 58 |
+
"prefetch_factor": 32,
|
| 59 |
+
"save_checkpoint_steps": 5000,
|
| 60 |
+
"world_size": 1,
|
| 61 |
+
"optim": "adamw",
|
| 62 |
+
"keep_checkpoint": 4,
|
| 63 |
+
"batch_size_multiple": 8,
|
| 64 |
+
"valid_batch_size": 2048,
|
| 65 |
+
"valid_steps": 5000
|
| 66 |
+
},
|
| 67 |
+
"transforms_configs": {
|
| 68 |
+
"sentencepiece": {
|
| 69 |
+
"src_subword_model": "${MODEL_PATH}/is.spm.model",
|
| 70 |
+
"tgt_subword_model": "${MODEL_PATH}/en.spm.model"
|
| 71 |
+
},
|
| 72 |
+
"filtertoolong": {
|
| 73 |
+
"src_seq_length": 256,
|
| 74 |
+
"tgt_seq_length": 256
|
| 75 |
+
}
|
| 76 |
+
},
|
| 77 |
+
"data": {
|
| 78 |
+
"corpus_1": {
|
| 79 |
+
"weight": 9,
|
| 80 |
+
"path_src": "train.is",
|
| 81 |
+
"path_tgt": "train.en",
|
| 82 |
+
"path_align": null,
|
| 83 |
+
"transforms": [
|
| 84 |
+
"sentencepiece",
|
| 85 |
+
"filtertoolong"
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
"corpus_2": {
|
| 89 |
+
"weight": 5,
|
| 90 |
+
"path_src": "/home/mark/mt/data/newscrawl.backtrans.is",
|
| 91 |
+
"path_tgt": "/home/mark/mt/data/newscrawl.2024.en",
|
| 92 |
+
"path_align": null,
|
| 93 |
+
"transforms": [
|
| 94 |
+
"sentencepiece",
|
| 95 |
+
"filtertoolong"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
"valid": {
|
| 99 |
+
"path_src": "valid.is",
|
| 100 |
+
"path_tgt": "valid.en",
|
| 101 |
+
"path_align": null,
|
| 102 |
+
"transforms": [
|
| 103 |
+
"sentencepiece",
|
| 104 |
+
"filtertoolong"
|
| 105 |
+
]
|
| 106 |
+
}
|
| 107 |
+
},
|
| 108 |
+
"model": {
|
| 109 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
| 110 |
+
"hidden_size": 1024,
|
| 111 |
+
"architecture": "transformer",
|
| 112 |
+
"share_decoder_embeddings": true,
|
| 113 |
+
"heads": 8,
|
| 114 |
+
"share_embeddings": false,
|
| 115 |
+
"transformer_ff": 4096,
|
| 116 |
+
"encoder": {
|
| 117 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
| 118 |
+
"hidden_size": 1024,
|
| 119 |
+
"n_positions": null,
|
| 120 |
+
"layers": 8,
|
| 121 |
+
"src_word_vec_size": 1024,
|
| 122 |
+
"encoder_type": "transformer",
|
| 123 |
+
"heads": 8,
|
| 124 |
+
"transformer_ff": 4096
|
| 125 |
+
},
|
| 126 |
+
"embeddings": {
|
| 127 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
| 128 |
+
"tgt_word_vec_size": 1024,
|
| 129 |
+
"src_word_vec_size": 1024,
|
| 130 |
+
"word_vec_size": 1024
|
| 131 |
+
},
|
| 132 |
+
"decoder": {
|
| 133 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
| 134 |
+
"hidden_size": 1024,
|
| 135 |
+
"n_positions": null,
|
| 136 |
+
"layers": 2,
|
| 137 |
+
"tgt_word_vec_size": 1024,
|
| 138 |
+
"decoder_type": "transformer",
|
| 139 |
+
"heads": 8,
|
| 140 |
+
"transformer_ff": 4096
|
| 141 |
+
}
|
| 142 |
+
}
|
| 143 |
+
}
|
eole-model/en.spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac985ba45c9ec783ae106ecde3c5873db2c14e4a1e76086e1eaf7d48295e9b0f
|
| 3 |
+
size 800209
|
eole-model/is.spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:538f374f5558509c152305b8efbea6cc87daa58cfd52dea3bb962c0ad908c797
|
| 3 |
+
size 814659
|
eole-model/model.00.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:604248809bbf7091982bf258f138b66759ff1f1bbc8ddbd63d352565074f5bde
|
| 3 |
+
size 840314816
|
eole-model/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af874d90330cc235279656d6780eed25689bbcfd8467926a1adce65340c778f8
|
| 3 |
+
size 409915789
|
source_vocabulary.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src.spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:538f374f5558509c152305b8efbea6cc87daa58cfd52dea3bb962c0ad908c797
|
| 3 |
+
size 814659
|
target_vocabulary.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tgt.spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac985ba45c9ec783ae106ecde3c5873db2c14e4a1e76086e1eaf7d48295e9b0f
|
| 3 |
+
size 800209
|