File size: 33,715 Bytes
0f9b0be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
[INFO|tokenization_utils_base.py:2082] 2024-11-08 03:33:16,595 >> loading file tokenizer.model
[INFO|tokenization_utils_base.py:2082] 2024-11-08 03:33:16,595 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:2082] 2024-11-08 03:33:16,595 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:2082] 2024-11-08 03:33:16,595 >> loading file tokenizer_config.json
[INFO|tokenization_utils_base.py:2082] 2024-11-08 03:33:16,595 >> loading file tokenizer.json
tokenizer special_tokens_map: {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<unk>'}
tokenizer special_tokens_map: {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<unk>'}
0%| | 0/495 [00:00<?, ?ex/s]
0%| | 0/495 [00:00<?, ?ex/s]
2%|β | 8/495 [00:00<00:06, 75.52ex/s]
2%|β | 9/495 [00:00<00:06, 80.49ex/s]
4%|β | 18/495 [00:00<00:05, 84.99ex/s]
4%|β | 18/495 [00:00<00:05, 85.72ex/s]
5%|β | 27/495 [00:00<00:05, 79.64ex/s]
5%|β | 27/495 [00:00<00:05, 80.11ex/s]
7%|β | 36/495 [00:00<00:05, 82.03ex/s]
7%|β | 36/495 [00:00<00:05, 82.68ex/s]
9%|β | 46/495 [00:00<00:05, 85.11ex/s]
9%|β | 45/495 [00:00<00:05, 84.91ex/s]
11%|β | 55/495 [00:00<00:05, 84.52ex/s]
11%|β | 54/495 [00:00<00:05, 84.16ex/s]
13%|ββ | 65/495 [00:00<00:05, 85.48ex/s]
13%|ββ | 64/495 [00:00<00:04, 86.32ex/s]
15%|ββ | 74/495 [00:00<00:04, 84.73ex/s]
15%|ββ | 73/495 [00:00<00:04, 84.47ex/s]
17%|ββ | 83/495 [00:01<00:05, 81.72ex/s]
17%|ββ | 82/495 [00:00<00:05, 80.74ex/s]
19%|ββ | 92/495 [00:01<00:04, 81.31ex/s]
18%|ββ | 91/495 [00:01<00:04, 80.85ex/s]
20%|ββ | 101/495 [00:01<00:04, 81.21ex/s]
20%|ββ | 100/495 [00:01<00:05, 78.34ex/s]
22%|βββ | 110/495 [00:01<00:05, 76.94ex/s]
22%|βββ | 108/495 [00:01<00:05, 76.58ex/s]
24%|βββ | 119/495 [00:01<00:04, 79.74ex/s]
24%|βββ | 118/495 [00:01<00:04, 81.00ex/s]
26%|βββ | 128/495 [00:01<00:04, 80.79ex/s]
26%|βββ | 127/495 [00:01<00:04, 80.92ex/s]
28%|βββ | 137/495 [00:01<00:04, 81.64ex/s]
27%|βββ | 136/495 [00:01<00:04, 82.97ex/s]
30%|βββ | 147/495 [00:01<00:04, 84.18ex/s]
29%|βββ | 146/495 [00:01<00:04, 85.60ex/s]
32%|ββββ | 156/495 [00:01<00:03, 84.85ex/s]
31%|ββββ | 155/495 [00:01<00:04, 84.42ex/s]
33%|ββββ | 165/495 [00:02<00:04, 77.61ex/s]
33%|ββββ | 164/495 [00:02<00:04, 77.74ex/s]
35%|ββββ | 175/495 [00:02<00:03, 83.01ex/s]
35%|ββββ | 174/495 [00:02<00:03, 82.78ex/s]
37%|ββββ | 185/495 [00:02<00:03, 83.97ex/s]
37%|ββββ | 184/495 [00:02<00:03, 85.33ex/s]
39%|ββββ | 195/495 [00:02<00:03, 88.10ex/s]
39%|ββββ | 193/495 [00:02<00:03, 86.25ex/s]
41%|ββββ | 204/495 [00:02<00:03, 87.55ex/s]
41%|ββββ | 202/495 [00:02<00:03, 86.28ex/s]
43%|βββββ | 213/495 [00:02<00:03, 86.39ex/s]
43%|βββββ | 211/495 [00:02<00:03, 86.27ex/s]
45%|βββββ | 222/495 [00:02<00:03, 85.12ex/s]
44%|βββββ | 220/495 [00:02<00:03, 85.17ex/s]
47%|βββββ | 231/495 [00:02<00:03, 85.11ex/s]
46%|βββββ | 229/495 [00:02<00:03, 82.55ex/s]
48%|βββββ | 240/495 [00:02<00:02, 85.58ex/s]
48%|βββββ | 238/495 [00:02<00:03, 83.28ex/s]
50%|βββββ | 249/495 [00:03<00:03, 72.85ex/s]
50%|βββββ | 247/495 [00:03<00:03, 74.26ex/s]
52%|ββββββ | 257/495 [00:03<00:03, 62.96ex/s]
52%|ββββββ | 255/495 [00:03<00:03, 63.16ex/s]
53%|ββββββ | 264/495 [00:03<00:04, 56.63ex/s]
53%|ββββββ | 262/495 [00:03<00:04, 57.98ex/s]
55%|ββββββ | 271/495 [00:03<00:04, 53.13ex/s]
54%|ββββββ | 269/495 [00:03<00:04, 53.07ex/s]
56%|ββββββ | 277/495 [00:03<00:04, 51.58ex/s]
56%|ββββββ | 275/495 [00:03<00:04, 51.49ex/s]
57%|ββββββ | 283/495 [00:03<00:04, 51.09ex/s]
57%|ββββββ | 281/495 [00:03<00:04, 50.43ex/s]
58%|ββββββ | 289/495 [00:03<00:04, 50.38ex/s]
58%|ββββββ | 287/495 [00:03<00:04, 49.36ex/s]
60%|ββββββ | 295/495 [00:04<00:04, 46.62ex/s]
59%|ββββββ | 293/495 [00:04<00:04, 47.06ex/s]
61%|ββββββ | 300/495 [00:04<00:04, 46.73ex/s]
60%|ββββββ | 298/495 [00:04<00:04, 46.31ex/s]
62%|βββββββ | 305/495 [00:04<00:04, 46.23ex/s]
61%|ββββββ | 303/495 [00:04<00:04, 44.87ex/s]
63%|βββββββ | 310/495 [00:04<00:03, 46.34ex/s]
62%|βββββββ | 308/495 [00:04<00:04, 45.40ex/s]
64%|βββββββ | 315/495 [00:04<00:03, 46.95ex/s]
63%|βββββββ | 314/495 [00:04<00:03, 47.72ex/s]
65%|βββββββ | 321/495 [00:04<00:03, 49.09ex/s]
65%|βββββββ | 320/495 [00:04<00:03, 48.57ex/s]
66%|βββββββ | 326/495 [00:04<00:03, 47.02ex/s]
66%|βββββββ | 325/495 [00:04<00:03, 46.90ex/s]
67%|βββββββ | 331/495 [00:04<00:03, 43.99ex/s]
67%|βββββββ | 330/495 [00:04<00:03, 43.84ex/s]
68%|βββββββ | 336/495 [00:05<00:04, 39.17ex/s]
68%|βββββββ | 335/495 [00:05<00:04, 38.92ex/s]
69%|βββββββ | 341/495 [00:05<00:04, 38.21ex/s]
69%|βββββββ | 340/495 [00:05<00:03, 40.93ex/s]
70%|βββββββ | 346/495 [00:05<00:03, 39.70ex/s]
70%|βββββββ | 345/495 [00:05<00:03, 40.00ex/s]
71%|βββββββ | 351/495 [00:05<00:03, 40.78ex/s]
71%|βββββββ | 350/495 [00:05<00:03, 39.99ex/s]
72%|ββββββββ | 356/495 [00:05<00:03, 41.52ex/s]
72%|ββββββββ | 355/495 [00:05<00:03, 40.89ex/s]
73%|ββββββββ | 361/495 [00:05<00:03, 38.55ex/s]
73%|ββββββββ | 360/495 [00:05<00:03, 37.61ex/s]
74%|ββββββββ | 366/495 [00:05<00:03, 40.84ex/s]
74%|ββββββββ | 365/495 [00:05<00:03, 39.98ex/s]
75%|ββββββββ | 371/495 [00:05<00:02, 41.59ex/s]
75%|ββββββββ | 370/495 [00:05<00:03, 40.84ex/s]
76%|ββββββββ | 376/495 [00:05<00:02, 41.04ex/s]
76%|ββββββββ | 375/495 [00:06<00:02, 40.75ex/s]
77%|ββββββββ | 381/495 [00:06<00:02, 40.77ex/s]
77%|ββββββββ | 380/495 [00:06<00:02, 40.62ex/s]
78%|ββββββββ | 386/495 [00:06<00:02, 37.01ex/s]
78%|ββββββββ | 385/495 [00:06<00:03, 36.55ex/s]
79%|ββββββββ | 391/495 [00:06<00:02, 38.64ex/s]
79%|ββββββββ | 389/495 [00:06<00:02, 36.43ex/s]
80%|ββββββββ | 396/495 [00:06<00:02, 38.63ex/s]
79%|ββββββββ | 393/495 [00:06<00:02, 36.93ex/s]
81%|ββββββββ | 400/495 [00:06<00:02, 38.57ex/s]
80%|ββββββββ | 397/495 [00:06<00:02, 37.03ex/s]
82%|βββββββββ | 405/495 [00:06<00:02, 41.28ex/s]
81%|βββββββββ | 403/495 [00:06<00:02, 41.88ex/s]
83%|βββββββββ | 410/495 [00:06<00:02, 42.44ex/s]
82%|βββββββββ | 408/495 [00:06<00:02, 43.00ex/s]
84%|βββββββββ | 415/495 [00:06<00:01, 42.81ex/s]
83%|βββββββββ | 413/495 [00:06<00:01, 44.44ex/s]
85%|βββββββββ | 420/495 [00:07<00:01, 42.78ex/s]
84%|βββββββββ | 418/495 [00:07<00:01, 44.93ex/s]
86%|βββββββββ | 426/495 [00:07<00:01, 46.20ex/s]
86%|βββββββββ | 424/495 [00:07<00:01, 47.08ex/s]
87%|βββββββββ | 431/495 [00:07<00:01, 46.50ex/s]
87%|βββββββββ | 430/495 [00:07<00:01, 48.20ex/s]
88%|βββββββββ | 437/495 [00:07<00:01, 47.65ex/s]
88%|βββββββββ | 435/495 [00:07<00:01, 47.85ex/s]
89%|βββββββββ | 443/495 [00:07<00:01, 48.71ex/s]
89%|βββββββββ | 440/495 [00:07<00:01, 48.36ex/s]
91%|βββββββββ | 448/495 [00:07<00:00, 48.23ex/s]
90%|βββββββββ | 445/495 [00:07<00:01, 48.49ex/s]
92%|ββββββββββ| 454/495 [00:07<00:00, 49.79ex/s]
91%|βββββββββ | 451/495 [00:07<00:00, 50.02ex/s]
93%|ββββββββββ| 459/495 [00:07<00:00, 48.62ex/s]
92%|ββββββββββ| 456/495 [00:07<00:00, 48.95ex/s]
94%|ββββββββββ| 464/495 [00:07<00:00, 46.50ex/s]
93%|ββββββββββ| 462/495 [00:07<00:00, 49.78ex/s]
95%|ββββββββββ| 471/495 [00:08<00:00, 49.93ex/s]
94%|ββββββββββ| 467/495 [00:08<00:00, 48.26ex/s]
96%|ββββββββββ| 476/495 [00:08<00:00, 48.93ex/s]
96%|ββββββββββ| 473/495 [00:08<00:00, 49.38ex/s]
97%|ββββββββββ| 482/495 [00:08<00:00, 50.74ex/s]
97%|ββββββββββ| 479/495 [00:08<00:00, 50.27ex/s]
99%|ββββββββββ| 488/495 [00:08<00:00, 49.46ex/s]
98%|ββββββββββ| 485/495 [00:08<00:00, 50.91ex/s]
100%|ββββββββββ| 493/495 [00:08<00:00, 48.98ex/s]
99%|ββββββββββ| 491/495 [00:08<00:00, 48.36ex/s]
100%|ββββββββββ| 495/495 [00:08<00:00, 57.62ex/s]
100%|ββββββββββ| 495/495 [00:08<00:00, 57.44ex/s]
[INFO|configuration_utils.py:724] 2024-11-08 03:33:26,280 >> loading configuration file model/config.json
[INFO|configuration_utils.py:724] 2024-11-08 03:33:26,284 >> loading configuration file model/config.json
[INFO|configuration_utils.py:789] 2024-11-08 03:33:26,286 >> Model config IndexConfig {
"_name_or_path": "model",
"architectures": [
"IndexForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"auto_map": {
"AutoConfig": "configuration_index.IndexConfig",
"AutoModelForCausalLM": "modeling_index.IndexForCausalLM",
"AutoModelForSequenceClassification": "modeling_index.IndexForSequenceClassification"
},
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "silu",
"hidden_size": 2048,
"initializer_range": 0.01,
"intermediate_size": 5888,
"max_length": 32768,
"max_position_embeddings": 32768,
"model_type": "index",
"norm_head": 1,
"num_attention_heads": 16,
"num_hidden_layers": 36,
"num_key_value_heads": 16,
"pad_token_id": 0,
"pretraining_tp": 1,
"rms_norm_eps": 1e-06,
"rope_ratio": 32,
"rope_scaling": null,
"rope_theta": 10000.0,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.39.2",
"use_cache": true,
"vocab_size": 65029
}
[INFO|modeling_utils.py:3280] 2024-11-08 03:33:26,333 >> loading weights file model/pytorch_model.bin
[INFO|modeling_utils.py:1417] 2024-11-08 03:33:26,403 >> Instantiating IndexForCausalLM model under default dtype torch.bfloat16.
[INFO|configuration_utils.py:928] 2024-11-08 03:33:26,404 >> Generate config GenerationConfig {
"bos_token_id": 1,
"eos_token_id": 2,
"max_length": 32768,
"pad_token_id": 0,
"use_cache": false
}
[INFO|modeling_utils.py:4024] 2024-11-08 03:33:31,504 >> All model checkpoint weights were used when initializing IndexForCausalLM.
[INFO|modeling_utils.py:4032] 2024-11-08 03:33:31,504 >> All the weights of IndexForCausalLM were initialized from the model checkpoint at model.
If your task is similar to the task the model of the checkpoint was trained on, you can already use IndexForCausalLM for predictions without further training.
[INFO|configuration_utils.py:881] 2024-11-08 03:33:31,511 >> loading configuration file model/generation_config.json
/opt/conda/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:492: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.
warnings.warn(
/opt/conda/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:509: UserWarning: `do_sample` is set to `False`. However, `top_k` is set to `1` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_k`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.
warnings.warn(
/opt/conda/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:492: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
warnings.warn(
/opt/conda/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:509: UserWarning: `do_sample` is set to `False`. However, `top_k` is set to `1` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_k`.
warnings.warn(
[INFO|configuration_utils.py:928] 2024-11-08 03:33:31,512 >> Generate config GenerationConfig {
"bos_token_id": 1,
"eos_token_id": 2,
"pad_token_id": 0,
"repetition_penalty": 1.1,
"temperature": 0.9,
"top_k": 1
}
/opt/conda/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:492: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.
warnings.warn(
/opt/conda/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:509: UserWarning: `do_sample` is set to `False`. However, `top_k` is set to `1` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_k`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.
warnings.warn(
/opt/conda/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:492: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`.
warnings.warn(
/opt/conda/lib/python3.10/site-packages/transformers/generation/configuration_utils.py:509: UserWarning: `do_sample` is set to `False`. However, `top_k` is set to `1` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_k`.
warnings.warn(
trainable params: 46,301,184 || all params: 2,219,120,640 || trainable%: 2.0864653847751153
trainable params: 46,301,184 || all params: 2,219,120,640 || trainable%: 2.0864653847751153
[INFO|trainer.py:607] 2024-11-08 03:33:34,099 >> Using auto half precision backend
[WARNING|modeling_utils.py:2127] 2024-11-08 03:33:34,107 >> You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it).Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model.
[WARNING|modeling_utils.py:2127] 2024-11-08 03:33:34,323 >> You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it).Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model.
[INFO|trainer.py:1969] 2024-11-08 03:33:35,208 >> ***** Running training *****
[INFO|trainer.py:1970] 2024-11-08 03:33:35,208 >> Num examples = 495
[INFO|trainer.py:1971] 2024-11-08 03:33:35,208 >> Num Epochs = 6
[INFO|trainer.py:1972] 2024-11-08 03:33:35,208 >> Instantaneous batch size per device = 4
[INFO|trainer.py:1975] 2024-11-08 03:33:35,208 >> Total train batch size (w. parallel, distributed & accumulation) = 32
[INFO|trainer.py:1976] 2024-11-08 03:33:35,208 >> Gradient Accumulation steps = 4
[INFO|trainer.py:1977] 2024-11-08 03:33:35,208 >> Total optimization steps = 90
[INFO|trainer.py:1978] 2024-11-08 03:33:35,218 >> Number of trainable parameters = 46,301,184
0%| | 0/90 [00:00<?, ?it/s]/opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/opt/conda/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py:600: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.4 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
return fn(*args, **kwargs)
/opt/conda/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
/opt/conda/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cpu', args...)` instead.
with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
1%| | 1/90 [05:04<7:32:22, 304.97s/it]
2%|β | 2/90 [10:20<7:36:06, 310.99s/it]
3%|β | 3/90 [15:37<7:34:58, 313.77s/it]
4%|β | 4/90 [20:55<7:32:21, 315.59s/it]
6%|β | 5/90 [26:12<7:27:52, 316.14s/it]
7%|β | 6/90 [31:28<7:22:15, 315.90s/it]
8%|β | 7/90 [36:43<7:16:41, 315.68s/it]
9%|β | 8/90 [42:02<7:13:00, 316.84s/it]
10%|β | 9/90 [47:20<7:08:11, 317.17s/it]
11%|β | 10/90 [52:36<7:02:20, 316.76s/it]
{'loss': 1.3217, 'grad_norm': 0.439453125, 'learning_rate': 0.0001469619730210873, 'epoch': 0.65}
11%|β | 10/90 [52:36<7:02:20, 316.76s/it]
12%|ββ | 11/90 [57:51<6:56:28, 316.31s/it]
13%|ββ | 12/90 [1:03:10<6:52:01, 316.94s/it]
14%|ββ | 13/90 [1:08:26<6:46:36, 316.83s/it]
16%|ββ | 14/90 [1:13:45<6:42:08, 317.48s/it]
17%|ββ | 15/90 [1:19:04<6:37:18, 317.85s/it]
18%|ββ | 16/90 [1:24:20<6:31:14, 317.23s/it]
19%|ββ | 17/90 [1:29:35<6:25:24, 316.77s/it]
20%|ββ | 18/90 [1:34:54<6:20:40, 317.22s/it]
21%|ββ | 19/90 [1:40:08<6:14:25, 316.42s/it]
22%|βββ | 20/90 [1:45:26<6:09:46, 316.95s/it]
{'loss': 1.069, 'grad_norm': 0.2490234375, 'learning_rate': 0.00013504059306932703, 'epoch': 1.29}
22%|βββ | 20/90 [1:45:26<6:09:46, 316.95s/it]
23%|βββ | 21/90 [1:50:47<6:05:49, 318.11s/it]
24%|βββ | 22/90 [1:56:05<6:00:19, 317.93s/it]
26%|βββ | 23/90 [2:01:22<5:54:44, 317.69s/it]
27%|βββ | 24/90 [2:06:37<5:48:43, 317.03s/it]
28%|βββ | 25/90 [2:11:55<5:43:46, 317.34s/it]
29%|βββ | 26/90 [2:17:12<5:38:13, 317.09s/it]
30%|βββ | 27/90 [2:22:32<5:33:56, 318.03s/it]
31%|βββ | 28/90 [2:27:48<5:27:56, 317.36s/it]
32%|ββββ | 29/90 [2:33:02<5:21:37, 316.36s/it]
33%|ββββ | 30/90 [2:38:18<5:16:07, 316.13s/it]
{'loss': 1.1914, 'grad_norm': 0.259765625, 'learning_rate': 0.00011554806130916982, 'epoch': 1.94}
33%|ββββ | 30/90 [2:38:18<5:16:07, 316.13s/it]
34%|ββββ | 31/90 [2:43:35<5:11:15, 316.54s/it]
36%|ββββ | 32/90 [2:48:52<5:06:00, 316.56s/it]
37%|ββββ | 33/90 [2:54:12<5:01:53, 317.79s/it]
38%|ββββ | 34/90 [2:59:27<4:55:48, 316.94s/it]
39%|ββββ | 35/90 [3:04:44<4:50:26, 316.85s/it]
40%|ββββ | 36/90 [3:09:58<4:44:26, 316.05s/it]
41%|ββββ | 37/90 [3:15:17<4:39:51, 316.82s/it]
42%|βββββ | 38/90 [3:20:38<4:35:43, 318.15s/it]
43%|βββββ | 39/90 [3:25:55<4:30:15, 317.95s/it]
44%|βββββ | 40/90 [3:31:12<4:24:40, 317.61s/it]
{'loss': 1.0584, 'grad_norm': 0.33203125, 'learning_rate': 9.094239671647324e-05, 'epoch': 2.58}
44%|βββββ | 40/90 [3:31:12<4:24:40, 317.61s/it]
46%|βββββ | 41/90 [3:36:31<4:19:35, 317.87s/it]
47%|βββββ | 42/90 [3:41:49<4:14:23, 317.99s/it]
48%|βββββ | 43/90 [3:47:07<4:09:03, 317.94s/it]
49%|βββββ | 44/90 [3:52:26<4:04:06, 318.41s/it]
50%|βββββ | 45/90 [3:57:41<3:57:57, 317.27s/it]
51%|βββββ | 46/90 [4:02:55<3:51:50, 316.15s/it]
52%|ββββββ | 47/90 [4:08:11<3:46:35, 316.17s/it]
53%|ββββββ | 48/90 [4:13:28<3:41:33, 316.52s/it]
54%|ββββββ | 49/90 [4:18:45<3:36:28, 316.78s/it]
56%|ββββββ | 50/90 [4:24:00<3:30:39, 315.98s/it]
{'loss': 1.1262, 'grad_norm': 0.3359375, 'learning_rate': 6.432638712950362e-05, 'epoch': 3.23}
56%|ββββββ | 50/90 [4:24:00<3:30:39, 315.98s/it]
57%|ββββββ | 51/90 [4:29:20<3:26:16, 317.34s/it]
58%|ββββββ | 52/90 [4:34:39<3:21:17, 317.82s/it]
59%|ββββββ | 53/90 [4:39:57<3:16:01, 317.87s/it]
60%|ββββββ | 54/90 [4:45:13<3:10:24, 317.34s/it]
61%|ββββββ | 55/90 [4:50:31<3:05:13, 317.52s/it]
62%|βββββββ | 56/90 [4:55:49<3:00:04, 317.78s/it]
63%|βββββββ | 57/90 [5:01:08<2:54:56, 318.07s/it]
64%|βββββββ | 58/90 [5:06:25<2:49:21, 317.56s/it]
66%|βββββββ | 59/90 [5:11:43<2:44:14, 317.87s/it]
67%|βββββββ | 60/90 [5:16:58<2:38:25, 316.86s/it]
{'loss': 0.7994, 'grad_norm': 0.34765625, 'learning_rate': 3.905632599599576e-05, 'epoch': 3.87}
67%|βββββββ | 60/90 [5:16:58<2:38:25, 316.86s/it]
68%|βββββββ | 61/90 [5:22:17<2:33:26, 317.47s/it]
69%|βββββββ | 62/90 [5:27:34<2:28:12, 317.58s/it]
70%|βββββββ | 63/90 [5:32:51<2:22:45, 317.25s/it]
71%|βββββββ | 64/90 [5:38:11<2:17:50, 318.10s/it]
72%|ββββββββ | 65/90 [5:43:31<2:12:48, 318.73s/it]
73%|ββββββββ | 66/90 [5:48:47<2:07:06, 317.75s/it]
74%|ββββββββ | 67/90 [5:54:05<2:01:49, 317.82s/it]
76%|ββββββββ | 68/90 [5:59:23<1:56:37, 318.07s/it]
77%|ββββββββ | 69/90 [6:04:42<1:51:25, 318.34s/it]
78%|ββββββββ | 70/90 [6:10:01<1:46:10, 318.53s/it]
{'loss': 0.7715, 'grad_norm': 0.333984375, 'learning_rate': 1.8318781923430636e-05, 'epoch': 4.52}
78%|ββββββββ | 70/90 [6:10:01<1:46:10, 318.53s/it]
79%|ββββββββ | 71/90 [6:15:19<1:40:48, 318.33s/it]
80%|ββββββββ | 72/90 [6:20:34<1:35:09, 317.19s/it]
81%|ββββββββ | 73/90 [6:25:50<1:29:47, 316.92s/it]
82%|βββββββββ | 74/90 [6:31:03<1:24:11, 315.70s/it]
83%|βββββββββ | 75/90 [6:36:16<1:18:42, 314.87s/it]
84%|βββββββββ | 76/90 [6:41:31<1:13:30, 315.05s/it]
86%|βββββββββ | 77/90 [6:46:49<1:08:25, 315.80s/it]
87%|βββββββββ | 78/90 [6:52:07<1:03:19, 316.59s/it]
88%|βββββββββ | 79/90 [6:57:26<58:09, 317.18s/it]
89%|βββββββββ | 80/90 [7:02:42<52:47, 316.78s/it]
{'loss': 1.0044, 'grad_norm': 0.291015625, 'learning_rate': 4.72877062501788e-06, 'epoch': 5.16}
89%|βββββββββ | 80/90 [7:02:42<52:47, 316.78s/it]
90%|βββββββββ | 81/90 [7:07:56<47:25, 316.12s/it]
91%|βββββββββ | 82/90 [7:13:10<42:03, 315.42s/it]
92%|ββββββββββ| 83/90 [7:18:23<36:43, 314.82s/it]
93%|ββββββββββ| 84/90 [7:23:42<31:36, 316.08s/it]
94%|ββββββββββ| 85/90 [7:28:57<26:18, 315.73s/it]
96%|ββββββββββ| 86/90 [7:34:16<21:06, 316.58s/it]
97%|ββββββββββ| 87/90 [7:39:34<15:51, 317.06s/it]
98%|ββββββββββ| 88/90 [7:44:54<10:35, 317.84s/it]
99%|ββββββββββ| 89/90 [7:50:10<05:17, 317.32s/it]
100%|ββββββββββ| 90/90 [7:55:28<00:00, 317.68s/it]
{'loss': 0.96, 'grad_norm': 0.287109375, 'learning_rate': 0.0, 'epoch': 5.81}
100%|ββββββββββ| 90/90 [7:55:28<00:00, 317.68s/it][INFO|trainer.py:2231] 2024-11-08 11:29:04,434 >>
Training completed. Do not forget to share your model on huggingface.co/models =)
{'train_runtime': 28529.2155, 'train_samples_per_second': 0.104, 'train_steps_per_second': 0.003, 'train_loss': 1.0335554016960993, 'epoch': 5.81}
100%|ββββββββββ| 90/90 [7:55:28<00:00, 317.68s/it]
100%|ββββββββββ| 90/90 [7:55:28<00:00, 316.99s/it]
[INFO|tokenization_utils_base.py:2502] 2024-11-08 11:29:04,871 >> tokenizer config file saved in /kaggle/working/adapter/tokenizer_config.json
[INFO|tokenization_utils_base.py:2511] 2024-11-08 11:29:04,872 >> Special tokens file saved in /kaggle/working/adapter/special_tokens_map.json
ModelTrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.95,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=True,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=False,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=False,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=4,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=0.00015,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/kaggle/working/adapter/runs/Nov08_03-33-16_803be201245f,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=10,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=cosine,
max_grad_norm=0.3,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=6.0,
optim=adamw_torch,
optim_args=None,
optim_target_modules=None,
output_dir=/kaggle/working/adapter,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=4,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/kaggle/working/adapter,
save_on_each_node=False,
save_only_model=False,
save_safetensors=False,
save_steps=250,
save_strategy=steps,
save_total_limit=None,
seed=1234,
skip_memory_metrics=True,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.02,
warmup_steps=0,
weight_decay=0.01,
)ModelTrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.95,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=True,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=False,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=False,
do_predict=False,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=4,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=0.00015,
length_column_name=length,
load_best_model_at_end=False,
local_rank=1,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/kaggle/working/adapter/runs/Nov08_03-33-16_803be201245f,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=10,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=cosine,
max_grad_norm=0.3,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=6.0,
optim=adamw_torch,
optim_args=None,
optim_target_modules=None,
output_dir=/kaggle/working/adapter,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=4,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/kaggle/working/adapter,
save_on_each_node=False,
save_only_model=False,
save_safetensors=False,
save_steps=250,
save_strategy=steps,
save_total_limit=None,
seed=1234,
skip_memory_metrics=True,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.02,
warmup_steps=0,
weight_decay=0.01,
)
[rank0]:[W1108 11:29:05.205724944 ProcessGroupNCCL.cpp:1168] Warning: WARNING: process group has NOT been destroyed before we destruct ProcessGroupNCCL. On normal program exit, the application should call destroy_process_group to ensure that any pending NCCL operations have finished in this process. In rare cases this process can exit before this point and block the progress of another member of the process group. This constraint has always been present, but this warning has only been added since PyTorch 2.4 (function operator())
|