File size: 11,250 Bytes
ab80e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
"""
Utility functions for the Universal Image Classifier
"""
import torch
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import os
import json
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix, classification_report
import numpy as np
from typing import List, Dict, Tuple, Optional
from pathlib import Path
import pandas as pd
def load_dataset_from_folder(
data_dir: str,
class_names: Optional[List[str]] = None,
valid_extensions: Tuple[str, ...] = ('.jpg', '.jpeg', '.png', '.bmp', '.tiff')
) -> Tuple[List[str], List[int], List[str]]:
"""
Load dataset from folder structure:
data_dir/
βββ class1/
β βββ img1.jpg
β βββ img2.jpg
βββ class2/
βββ img3.jpg
βββ img4.jpg
Returns:
image_paths: List of image file paths
labels: List of corresponding class indices
class_names: List of class names
"""
data_path = Path(data_dir)
if not data_path.exists():
raise ValueError(f"Data directory {data_dir} does not exist")
# Get class directories
class_dirs = [d for d in data_path.iterdir() if d.is_dir()]
class_dirs.sort()
if class_names is None:
class_names = [d.name for d in class_dirs]
image_paths = []
labels = []
for class_idx, class_dir in enumerate(class_dirs):
class_name = class_dir.name
if class_name not in class_names:
continue
class_label = class_names.index(class_name)
# Get all image files in this class directory
for img_file in class_dir.iterdir():
if img_file.suffix.lower() in valid_extensions:
image_paths.append(str(img_file))
labels.append(class_label)
print(f"Loaded {len(image_paths)} images from {len(class_names)} classes")
for i, class_name in enumerate(class_names):
count = labels.count(i)
print(f" {class_name}: {count} images")
return image_paths, labels, class_names
def load_dataset_from_csv(
csv_file: str,
image_col: str = 'image_path',
label_col: str = 'label',
class_names: Optional[List[str]] = None
) -> Tuple[List[str], List[int], List[str]]:
"""
Load dataset from CSV file with columns for image paths and labels
Args:
csv_file: Path to CSV file
image_col: Column name for image paths
label_col: Column name for labels
class_names: Optional list of class names
Returns:
image_paths: List of image file paths
labels: List of corresponding class indices
class_names: List of class names
"""
df = pd.read_csv(csv_file)
image_paths = df[image_col].tolist()
# Handle both string and numeric labels
if df[label_col].dtype == 'object': # String labels
unique_labels = sorted(df[label_col].unique())
if class_names is None:
class_names = unique_labels
label_to_idx = {label: idx for idx, label in enumerate(class_names)}
labels = [label_to_idx[label] for label in df[label_col]]
else: # Numeric labels
labels = df[label_col].tolist()
if class_names is None:
class_names = [f"class_{i}" for i in range(max(labels) + 1)]
print(f"Loaded {len(image_paths)} images from CSV")
return image_paths, labels, class_names
def visualize_dataset(
image_paths: List[str],
labels: List[int],
class_names: List[str],
num_samples: int = 16,
figsize: Tuple[int, int] = (12, 8)
):
"""Visualize random samples from the dataset"""
import random
# Sample random images
indices = random.sample(range(len(image_paths)), min(num_samples, len(image_paths)))
rows = int(np.sqrt(num_samples))
cols = int(np.ceil(num_samples / rows))
fig, axes = plt.subplots(rows, cols, figsize=figsize)
axes = axes.flatten() if num_samples > 1 else [axes]
for i, idx in enumerate(indices):
if i >= len(axes):
break
img = Image.open(image_paths[idx]).convert('RGB')
axes[i].imshow(img)
axes[i].set_title(f"{class_names[labels[idx]]}")
axes[i].axis('off')
# Hide unused subplots
for i in range(len(indices), len(axes)):
axes[i].axis('off')
plt.tight_layout()
plt.show()
def plot_class_distribution(labels: List[int], class_names: List[str]):
"""Plot the distribution of classes in the dataset"""
class_counts = [labels.count(i) for i in range(len(class_names))]
plt.figure(figsize=(10, 6))
bars = plt.bar(class_names, class_counts)
plt.title('Class Distribution')
plt.xlabel('Classes')
plt.ylabel('Number of Images')
plt.xticks(rotation=45)
# Add count labels on bars
for bar, count in zip(bars, class_counts):
plt.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.1,
str(count), ha='center', va='bottom')
plt.tight_layout()
plt.show()
def evaluate_model(
model: torch.nn.Module,
test_loader: DataLoader,
class_names: List[str],
device: str = "cpu"
) -> Dict:
"""Evaluate model performance and generate metrics"""
model.eval()
all_predictions = []
all_labels = []
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs, 1)
all_predictions.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
# Calculate metrics
accuracy = np.mean(np.array(all_predictions) == np.array(all_labels))
# Classification report
report = classification_report(
all_labels, all_predictions,
target_names=class_names,
output_dict=True
)
return {
'accuracy': accuracy,
'predictions': all_predictions,
'true_labels': all_labels,
'classification_report': report
}
def plot_confusion_matrix(
true_labels: List[int],
predictions: List[int],
class_names: List[str],
figsize: Tuple[int, int] = (8, 6)
):
"""Plot confusion matrix"""
cm = confusion_matrix(true_labels, predictions)
plt.figure(figsize=figsize)
sns.heatmap(
cm,
annot=True,
fmt='d',
cmap='Blues',
xticklabels=class_names,
yticklabels=class_names
)
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.tight_layout()
plt.show()
def save_predictions(
predictions: List[int],
image_paths: List[str],
class_names: List[str],
output_file: str
):
"""Save predictions to CSV file"""
df = pd.DataFrame({
'image_path': image_paths,
'predicted_class_id': predictions,
'predicted_class_name': [class_names[pred] for pred in predictions]
})
df.to_csv(output_file, index=False)
print(f"Predictions saved to {output_file}")
def create_model_card(
model_name: str,
model_config: Dict,
training_config: Dict,
performance_metrics: Dict,
class_names: List[str],
dataset_info: str,
output_file: str = "MODEL_CARD.md"
):
"""Create a model card for Hugging Face"""
card_content = f"""---
license: mit
tags:
- image-classification
- pytorch
- computer-vision
datasets:
- custom
metrics:
- accuracy
library_name: pytorch
---
# Universal Image Classifier - {model_name}
## Model Description
This is a {model_name} model trained using the Universal Image Classifier framework. It's designed for flexible image classification tasks and can be easily adapted to different datasets.
## Model Architecture
- **Model Type**: {model_name}
- **Input Size**: {model_config.get('input_height', 64)}x{model_config.get('input_width', 64)}
- **Number of Classes**: {model_config.get('num_classes', len(class_names))}
- **Hidden Dimensions**: {model_config.get('hidden_dim', 128)}
- **Number of Layers**: {model_config.get('num_layers', 4)}
- **Dropout Rate**: {model_config.get('dropout_rate', 0.1)}
- **Batch Normalization**: {model_config.get('use_batch_norm', True)}
## Training Configuration
- **Batch Size**: {training_config.get('batch_size', 32)}
- **Learning Rate**: {training_config.get('learning_rate', 0.001)}
- **Weight Decay**: {training_config.get('weight_decay', 1e-4)}
- **Early Stopping Patience**: {training_config.get('early_stopping_patience', 10)}
## Performance
- **Accuracy**: {performance_metrics.get('accuracy', 'N/A'):.4f}
- **Classes**: {', '.join(class_names)}
## Dataset
{dataset_info}
## Usage
```python
from inference import load_classifier
# Load the model
classifier = load_classifier(
model_path="path/to/model.pth",
config_path="path/to/config.json",
class_names={class_names}
)
# Make predictions
result = classifier.predict("path/to/image.jpg")
print(f"Predicted: {{result['predicted_class']}} ({{result['confidence']:.3f}})")
```
## Training
This model was trained using the Universal Image Classifier framework. To train your own model:
```python
from train import UniversalTrainer
from config import ModelConfig, TrainingConfig, DataConfig
# Configure and train
trainer = UniversalTrainer(model_config, training_config, data_config)
trainer.train(train_dataset, val_dataset, model_name="{model_name}")
```
## Framework
Built with the Universal Image Classifier framework - a flexible PyTorch-based solution for image classification tasks.
## License
MIT License
"""
with open(output_file, 'w') as f:
f.write(card_content)
print(f"Model card saved to {output_file}")
def export_to_huggingface(
model_path: str,
config_path: str,
class_names: List[str],
model_name: str,
output_dir: str = "huggingface_model"
):
"""Export model for Hugging Face Hub"""
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
# Copy model files
import shutil
shutil.copy(model_path, output_path / "pytorch_model.pth")
shutil.copy(config_path, output_path / "config.json")
# Create class names file
with open(output_path / "class_names.json", 'w') as f:
json.dump(class_names, f, indent=2)
# Create inference script
inference_script = '''
from inference import UniversalImageClassifier
import json
def load_model():
"""Load the model for inference"""
with open("class_names.json", "r") as f:
class_names = json.load(f)
classifier = UniversalImageClassifier(
model_path="pytorch_model.pth",
config_path="config.json",
class_names=class_names
)
return classifier
def predict(image_path):
"""Predict image class"""
classifier = load_model()
return classifier.predict(image_path)
'''
with open(output_path / "inference_hf.py", 'w') as f:
f.write(inference_script)
print(f"Model exported to {output_path} for Hugging Face Hub")
|