File size: 3,430 Bytes
991cd1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-fl102
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-hindi-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_6_1
type: common_voice_6_1
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 0.32018561484918795
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-mms-1b-hindi-colab
This model is a fine-tuned version of [facebook/mms-1b-fl102](https://huggingface.co/facebook/mms-1b-fl102) on the common_voice_6_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3535
- Wer: 0.3202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 16.7585 | 0.14 | 10 | 10.2106 | 2.0951 |
| 6.9602 | 0.27 | 20 | 3.7700 | 1.0046 |
| 2.4653 | 0.41 | 30 | 1.3321 | 0.6763 |
| 1.0919 | 0.55 | 40 | 0.6594 | 0.4664 |
| 0.7645 | 0.68 | 50 | 0.4930 | 0.3910 |
| 0.8434 | 0.82 | 60 | 0.4819 | 0.3898 |
| 0.5118 | 0.96 | 70 | 0.4492 | 0.3817 |
| 0.6097 | 1.1 | 80 | 0.4299 | 0.4327 |
| 0.4698 | 1.23 | 90 | 0.4308 | 0.3643 |
| 0.5402 | 1.37 | 100 | 0.4042 | 0.4107 |
| 0.5622 | 1.51 | 110 | 0.4156 | 0.3701 |
| 0.4084 | 1.64 | 120 | 0.4138 | 0.3701 |
| 0.4888 | 1.78 | 130 | 0.3917 | 0.3434 |
| 0.4253 | 1.92 | 140 | 0.3852 | 0.3457 |
| 0.5004 | 2.05 | 150 | 0.3843 | 0.3364 |
| 0.3791 | 2.19 | 160 | 0.3841 | 0.3469 |
| 0.3302 | 2.33 | 170 | 0.3764 | 0.3271 |
| 0.4047 | 2.47 | 180 | 0.3689 | 0.3364 |
| 0.2951 | 2.6 | 190 | 0.3657 | 0.3329 |
| 0.3545 | 2.74 | 200 | 0.3582 | 0.3306 |
| 0.3736 | 2.88 | 210 | 0.3585 | 0.3248 |
| 0.388 | 3.01 | 220 | 0.3602 | 0.3237 |
| 0.2997 | 3.15 | 230 | 0.3624 | 0.3167 |
| 0.3704 | 3.29 | 240 | 0.3625 | 0.3190 |
| 0.2095 | 3.42 | 250 | 0.3571 | 0.3248 |
| 0.3564 | 3.56 | 260 | 0.3570 | 0.3202 |
| 0.2119 | 3.7 | 270 | 0.3550 | 0.3225 |
| 0.3697 | 3.84 | 280 | 0.3542 | 0.3190 |
| 0.3551 | 3.97 | 290 | 0.3535 | 0.3202 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|