Update README.md
Browse files
README.md
CHANGED
@@ -9,21 +9,25 @@ tags:
|
|
9 |
- loss:SpladeLoss
|
10 |
- loss:SparseMarginMSELoss
|
11 |
- loss:FlopsLoss
|
12 |
-
base_model:
|
|
|
13 |
widget:
|
14 |
- text: leagues, define
|
15 |
-
- text:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
- text: how many tablespoons of garlic powder are in an ounce
|
28 |
pipeline_tag: feature-extraction
|
29 |
library_name: sentence-transformers
|
@@ -114,38 +118,35 @@ model-index:
|
|
114 |
- type: corpus_sparsity_ratio
|
115 |
value: 0.9943693333766356
|
116 |
name: Corpus Sparsity Ratio
|
|
|
|
|
|
|
|
|
|
|
117 |
---
|
118 |
|
119 |
-
# SPLADE
|
120 |
|
121 |
-
This is a
|
122 |
-
## Model Details
|
123 |
|
124 |
-
|
125 |
-
- **Model Type:** SPLADE Sparse Encoder
|
126 |
-
- **Base model:** [yosefw/SPLADE-BERT-Small-BS256](https://huggingface.co/yosefw/SPLADE-BERT-Small-BS256) <!-- at revision 43b8c4a930896cdbab236b2a46fe1b762216df1a -->
|
127 |
-
- **Maximum Sequence Length:** 512 tokens
|
128 |
-
- **Output Dimensionality:** 30522 dimensions
|
129 |
-
- **Similarity Function:** Dot Product
|
130 |
-
<!-- - **Training Dataset:** Unknown -->
|
131 |
-
<!-- - **Language:** Unknown -->
|
132 |
-
<!-- - **License:** Unknown -->
|
133 |
|
134 |
-
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
138 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
139 |
-
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
140 |
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
```
|
144 |
-
SparseEncoder(
|
145 |
-
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
|
146 |
-
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
147 |
-
)
|
148 |
-
```
|
149 |
|
150 |
## Usage
|
151 |
|
@@ -162,7 +163,7 @@ Then you can load this model and run inference.
|
|
162 |
from sentence_transformers import SparseEncoder
|
163 |
|
164 |
# Download from the 🤗 Hub
|
165 |
-
model = SparseEncoder("
|
166 |
# Run inference
|
167 |
queries = [
|
168 |
"how many tablespoons of garlic powder are in an ounce",
|
@@ -183,6 +184,34 @@ print(similarities)
|
|
183 |
# tensor([[26.3104, 20.4381, 15.5539]])
|
184 |
```
|
185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
<!--
|
187 |
### Direct Usage (Transformers)
|
188 |
|
@@ -207,6 +236,9 @@ You can finetune this model on your own dataset.
|
|
207 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
208 |
-->
|
209 |
|
|
|
|
|
|
|
210 |
## Evaluation
|
211 |
|
212 |
### Metrics
|
@@ -499,4 +531,5 @@ You can finetune this model on your own dataset.
|
|
499 |
## Model Card Contact
|
500 |
|
501 |
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
502 |
-
-->
|
|
|
|
9 |
- loss:SpladeLoss
|
10 |
- loss:SparseMarginMSELoss
|
11 |
- loss:FlopsLoss
|
12 |
+
base_model:
|
13 |
+
- prajjwal1/bert-small
|
14 |
widget:
|
15 |
- text: leagues, define
|
16 |
+
- text: >-
|
17 |
+
WATCH HOW YOU WANT. STARZ lets you stream hit original series and movies on
|
18 |
+
your favorite devices. Plus you can get the STARZ app on your smartphone or
|
19 |
+
tablet and download full movies and shows to watch off-line, anytime,
|
20 |
+
anywhere. START YOUR FREE TRIAL NOW.
|
21 |
+
- text: >-
|
22 |
+
Furthermore, priority must be given to national jurisdiction. Pointing out
|
23 |
+
that States applied universal jurisdiction differently, he expressed concern
|
24 |
+
at the abuse of its application by some national courts, which rendered it a
|
25 |
+
source of international conflict.
|
26 |
+
- text: >-
|
27 |
+
My sil tells me that my mil cooked the eggplant at high heat for a very long
|
28 |
+
time until it was almost burned. Is it possible that cooking it in such a
|
29 |
+
way gets rid of the bitterness? My mil bought her eggplants at the chain
|
30 |
+
grocery store- so this is not a freshness issue. Thanks for any ideas.
|
31 |
- text: how many tablespoons of garlic powder are in an ounce
|
32 |
pipeline_tag: feature-extraction
|
33 |
library_name: sentence-transformers
|
|
|
118 |
- type: corpus_sparsity_ratio
|
119 |
value: 0.9943693333766356
|
120 |
name: Corpus Sparsity Ratio
|
121 |
+
license: mit
|
122 |
+
datasets:
|
123 |
+
- microsoft/ms_marco
|
124 |
+
language:
|
125 |
+
- en
|
126 |
---
|
127 |
|
128 |
+
# SPLADE-BERT-Small-Distil
|
129 |
|
130 |
+
This is a SPLADE sparse retrieval model based on BERT-Small (29M) that was trained by distilling a Cross-Encoder on the MSMARCO dataset. The cross-encoder used was [ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2).
|
|
|
131 |
|
132 |
+
This SPLADE model is `2x` smaller than Naver's official `splade-v3-distilbert` while having `91%` of it's performance on the MSMARCO benchmark. This model is small enough to be used without a GPU on a dataset of a few thousand documents.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
- `Collection:` https://huggingface.co/collections/rasyosef/splade-tiny-msmarco-687c548c0691d95babf65b70
|
135 |
+
- `Distillation Dataset:` https://huggingface.co/datasets/yosefw/msmarco-train-distil-v2
|
136 |
+
- `Code:` https://github.com/rasyosef/splade-tiny-msmarco
|
137 |
|
138 |
+
## Performance
|
|
|
|
|
|
|
139 |
|
140 |
+
The splade models were evaluated on 55 thousand queries and 8.84 million documents from the [MSMARCO](https://huggingface.co/datasets/microsoft/ms_marco) dataset.
|
141 |
+
|
142 |
+
||Size (# Params)|MRR@10 (MS MARCO dev)|
|
143 |
+
|:---|:----|:-------------------|
|
144 |
+
|`BM25`|-|18.0|-|-|
|
145 |
+
|`rasyosef/splade-tiny`|4.4M|30.9|
|
146 |
+
|`rasyosef/splade-mini`|11.2M|34.1|
|
147 |
+
|`rasyosef/splade-small`|28.8M|35.4|
|
148 |
+
|`naver/splade-v3-distilbert`|67.0M|38.7|
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
## Usage
|
152 |
|
|
|
163 |
from sentence_transformers import SparseEncoder
|
164 |
|
165 |
# Download from the 🤗 Hub
|
166 |
+
model = SparseEncoder("rasyosef/splade-small")
|
167 |
# Run inference
|
168 |
queries = [
|
169 |
"how many tablespoons of garlic powder are in an ounce",
|
|
|
184 |
# tensor([[26.3104, 20.4381, 15.5539]])
|
185 |
```
|
186 |
|
187 |
+
## Model Details
|
188 |
+
|
189 |
+
### Model Description
|
190 |
+
- **Model Type:** SPLADE Sparse Encoder
|
191 |
+
- **Base model:** [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small)
|
192 |
+
- **Maximum Sequence Length:** 512 tokens
|
193 |
+
- **Output Dimensionality:** 30522 dimensions
|
194 |
+
- **Similarity Function:** Dot Product
|
195 |
+
<!-- - **Training Dataset:** Unknown -->
|
196 |
+
<!-- - **Language:** Unknown -->
|
197 |
+
<!-- - **License:** Unknown -->
|
198 |
+
|
199 |
+
### Model Sources
|
200 |
+
|
201 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
202 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
203 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
204 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
205 |
+
|
206 |
+
### Full Model Architecture
|
207 |
+
|
208 |
+
```
|
209 |
+
SparseEncoder(
|
210 |
+
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
|
211 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
212 |
+
)
|
213 |
+
```
|
214 |
+
|
215 |
<!--
|
216 |
### Direct Usage (Transformers)
|
217 |
|
|
|
236 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
237 |
-->
|
238 |
|
239 |
+
## More
|
240 |
+
<details><summary>Click to expand</summary>
|
241 |
+
|
242 |
## Evaluation
|
243 |
|
244 |
### Metrics
|
|
|
531 |
## Model Card Contact
|
532 |
|
533 |
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
534 |
+
-->
|
535 |
+
</details>
|