rd211 commited on
Commit
4574b80
·
verified ·
1 Parent(s): 39eb817

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 131072,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2c3204fafb06656d0a120bdf4b939d354039cc887d8007113d17cda0acbeada
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb090689d85ac595f288447fd36ea0ef16384951c925f9e4782d0f4d47cde28c
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c9a85f406815715a95c31462aeb49d067aaeaab92c35031420402e7d67e443d
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:483ba68a8551324aa36ca42ba590a210a9ff8cf217146ce506c7a7fd4b142f9a
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.136,
5
+ "eval_steps": 500,
6
+ "global_step": 170,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 2975.1640625,
14
+ "epoch": 0.0008,
15
+ "grad_norm": 0.4355019563597344,
16
+ "kl": 0.0,
17
+ "learning_rate": 5e-07,
18
+ "loss": 0.0713,
19
+ "reward": 0.20156250591389835,
20
+ "reward_std": 0.3847714839503169,
21
+ "rewards/end_of_conversation_reward_func": 0.04531250044237822,
22
+ "rewards/end_rm_reward_func": 0.234375,
23
+ "rewards/length_reward_func": -0.078125,
24
+ "rewards/thinking_reward_func": 0.0,
25
+ "step": 1
26
+ },
27
+ {
28
+ "clip_ratio": 0.004448831474292092,
29
+ "epoch": 0.0016,
30
+ "grad_norm": 0.43263977335652204,
31
+ "kl": 0.0011990070343017578,
32
+ "learning_rate": 5e-07,
33
+ "loss": 0.0713,
34
+ "step": 2
35
+ },
36
+ {
37
+ "clip_ratio": 0.0,
38
+ "completion_length": 3296.3828125,
39
+ "epoch": 0.0024,
40
+ "grad_norm": 0.4062162240261375,
41
+ "kl": 0.0015230178833007812,
42
+ "learning_rate": 5e-07,
43
+ "loss": 0.0715,
44
+ "reward": 0.13886718894355,
45
+ "reward_std": 0.47177961003035307,
46
+ "rewards/end_of_conversation_reward_func": 0.04218750080326572,
47
+ "rewards/end_rm_reward_func": 0.1669921875,
48
+ "rewards/length_reward_func": -0.0703125,
49
+ "rewards/thinking_reward_func": 0.0,
50
+ "step": 3
51
+ },
52
+ {
53
+ "clip_ratio": 0.004145426195464097,
54
+ "epoch": 0.0032,
55
+ "grad_norm": 0.40276269917704577,
56
+ "kl": 0.0014390945434570312,
57
+ "learning_rate": 5e-07,
58
+ "loss": 0.0715,
59
+ "step": 4
60
+ },
61
+ {
62
+ "clip_ratio": 0.0,
63
+ "completion_length": 3100.2265625,
64
+ "epoch": 0.004,
65
+ "grad_norm": 0.4627427111427237,
66
+ "kl": 0.0020265579223632812,
67
+ "learning_rate": 5e-07,
68
+ "loss": 0.0995,
69
+ "reward": 0.08027344156289473,
70
+ "reward_std": 0.39663981925696135,
71
+ "rewards/end_of_conversation_reward_func": 0.042187501152511686,
72
+ "rewards/end_rm_reward_func": 0.1279296875,
73
+ "rewards/length_reward_func": -0.08984375,
74
+ "rewards/thinking_reward_func": 0.0,
75
+ "step": 5
76
+ },
77
+ {
78
+ "clip_ratio": 0.004560721252346411,
79
+ "epoch": 0.0048,
80
+ "grad_norm": 0.46529399802489874,
81
+ "kl": 0.0024538040161132812,
82
+ "learning_rate": 5e-07,
83
+ "loss": 0.0994,
84
+ "step": 6
85
+ },
86
+ {
87
+ "clip_ratio": 0.0,
88
+ "completion_length": 3276.453125,
89
+ "epoch": 0.0056,
90
+ "grad_norm": 0.3877916318690821,
91
+ "kl": 0.0020666122436523438,
92
+ "learning_rate": 5e-07,
93
+ "loss": 0.0582,
94
+ "reward": 0.21875000558793545,
95
+ "reward_std": 0.4846916552633047,
96
+ "rewards/end_of_conversation_reward_func": 0.04296875110594556,
97
+ "rewards/end_rm_reward_func": 0.23828125,
98
+ "rewards/length_reward_func": -0.0625,
99
+ "rewards/thinking_reward_func": 0.0,
100
+ "step": 7
101
+ },
102
+ {
103
+ "clip_ratio": 0.003973798331571743,
104
+ "epoch": 0.0064,
105
+ "grad_norm": 0.38615742327777886,
106
+ "kl": 0.0033469200134277344,
107
+ "learning_rate": 5e-07,
108
+ "loss": 0.0582,
109
+ "step": 8
110
+ },
111
+ {
112
+ "clip_ratio": 0.0,
113
+ "completion_length": 3526.203125,
114
+ "epoch": 0.0072,
115
+ "grad_norm": 0.4253042896775168,
116
+ "kl": 0.0022199153900146484,
117
+ "learning_rate": 5e-07,
118
+ "loss": 0.0966,
119
+ "reward": 0.1652343834284693,
120
+ "reward_std": 0.44294953159987926,
121
+ "rewards/end_of_conversation_reward_func": 0.04218750086147338,
122
+ "rewards/end_rm_reward_func": 0.208984375,
123
+ "rewards/length_reward_func": -0.0859375,
124
+ "rewards/thinking_reward_func": 0.0,
125
+ "step": 9
126
+ },
127
+ {
128
+ "clip_ratio": 0.0041108929144684225,
129
+ "epoch": 0.008,
130
+ "grad_norm": 0.4043558511957573,
131
+ "kl": 0.003947257995605469,
132
+ "learning_rate": 5e-07,
133
+ "loss": 0.0965,
134
+ "step": 10
135
+ },
136
+ {
137
+ "clip_ratio": 0.0,
138
+ "completion_length": 3034.078125,
139
+ "epoch": 0.0088,
140
+ "grad_norm": 0.49241796839949487,
141
+ "kl": 0.002953052520751953,
142
+ "learning_rate": 5e-07,
143
+ "loss": 0.1329,
144
+ "reward": 0.17500000772997737,
145
+ "reward_std": 0.4498265013098717,
146
+ "rewards/end_of_conversation_reward_func": 0.0421875009778887,
147
+ "rewards/end_rm_reward_func": 0.18359375,
148
+ "rewards/length_reward_func": -0.05078125,
149
+ "rewards/thinking_reward_func": 0.0,
150
+ "step": 11
151
+ },
152
+ {
153
+ "clip_ratio": 0.0041437734180362895,
154
+ "epoch": 0.0096,
155
+ "grad_norm": 0.4951138738584942,
156
+ "kl": 0.0035958290100097656,
157
+ "learning_rate": 5e-07,
158
+ "loss": 0.1329,
159
+ "step": 12
160
+ },
161
+ {
162
+ "clip_ratio": 0.0,
163
+ "completion_length": 3284.0234375,
164
+ "epoch": 0.0104,
165
+ "grad_norm": 0.41732249846603825,
166
+ "kl": 0.020305156707763672,
167
+ "learning_rate": 5e-07,
168
+ "loss": 0.0294,
169
+ "reward": 0.20390625670552254,
170
+ "reward_std": 0.4014717759564519,
171
+ "rewards/end_of_conversation_reward_func": 0.047656250884756446,
172
+ "rewards/end_rm_reward_func": 0.22265625,
173
+ "rewards/length_reward_func": -0.06640625,
174
+ "rewards/thinking_reward_func": 0.0,
175
+ "step": 13
176
+ },
177
+ {
178
+ "clip_ratio": 0.00431825453415513,
179
+ "epoch": 0.0112,
180
+ "grad_norm": 0.4109822678418246,
181
+ "kl": 0.030427932739257812,
182
+ "learning_rate": 5e-07,
183
+ "loss": 0.0295,
184
+ "step": 14
185
+ },
186
+ {
187
+ "clip_ratio": 0.0,
188
+ "completion_length": 2969.1953125,
189
+ "epoch": 0.012,
190
+ "grad_norm": 0.48270296374119925,
191
+ "kl": 0.010631561279296875,
192
+ "learning_rate": 5e-07,
193
+ "loss": 0.0477,
194
+ "reward": 0.2396484500495717,
195
+ "reward_std": 0.3797372495755553,
196
+ "rewards/end_of_conversation_reward_func": 0.04921875154832378,
197
+ "rewards/end_rm_reward_func": 0.2255859375,
198
+ "rewards/length_reward_func": -0.03515625,
199
+ "rewards/thinking_reward_func": 0.0,
200
+ "step": 15
201
+ },
202
+ {
203
+ "clip_ratio": 0.004689372595748864,
204
+ "epoch": 0.0128,
205
+ "grad_norm": 0.4751005673450339,
206
+ "kl": 0.011091232299804688,
207
+ "learning_rate": 5e-07,
208
+ "loss": 0.0476,
209
+ "step": 16
210
+ },
211
+ {
212
+ "clip_ratio": 0.0,
213
+ "completion_length": 2861.1953125,
214
+ "epoch": 0.0136,
215
+ "grad_norm": 0.5567124142202874,
216
+ "kl": 0.014386177062988281,
217
+ "learning_rate": 5e-07,
218
+ "loss": 0.0303,
219
+ "reward": 0.21015625749714673,
220
+ "reward_std": 0.4733537929132581,
221
+ "rewards/end_of_conversation_reward_func": 0.05781250004656613,
222
+ "rewards/end_rm_reward_func": 0.2265625,
223
+ "rewards/length_reward_func": -0.07421875,
224
+ "rewards/thinking_reward_func": 0.0,
225
+ "step": 17
226
+ },
227
+ {
228
+ "clip_ratio": 0.004998111340682954,
229
+ "epoch": 0.0144,
230
+ "grad_norm": 0.5465399440176335,
231
+ "kl": 0.013627052307128906,
232
+ "learning_rate": 5e-07,
233
+ "loss": 0.0301,
234
+ "step": 18
235
+ },
236
+ {
237
+ "clip_ratio": 0.0,
238
+ "completion_length": 2829.671875,
239
+ "epoch": 0.0152,
240
+ "grad_norm": 0.5293451315346432,
241
+ "kl": 0.01097869873046875,
242
+ "learning_rate": 5e-07,
243
+ "loss": 0.0218,
244
+ "reward": 0.28183594974689186,
245
+ "reward_std": 0.49502080073580146,
246
+ "rewards/end_of_conversation_reward_func": 0.0523437510128133,
247
+ "rewards/end_rm_reward_func": 0.2646484375,
248
+ "rewards/length_reward_func": -0.03515625,
249
+ "rewards/thinking_reward_func": 0.0,
250
+ "step": 19
251
+ },
252
+ {
253
+ "clip_ratio": 0.004524174742982723,
254
+ "epoch": 0.016,
255
+ "grad_norm": 0.5117856717280709,
256
+ "kl": 0.010786056518554688,
257
+ "learning_rate": 5e-07,
258
+ "loss": 0.0217,
259
+ "step": 20
260
+ },
261
+ {
262
+ "clip_ratio": 0.0,
263
+ "completion_length": 3161.296875,
264
+ "epoch": 0.0168,
265
+ "grad_norm": 0.41948668078238804,
266
+ "kl": 0.008313179016113281,
267
+ "learning_rate": 5e-07,
268
+ "loss": 0.0421,
269
+ "reward": 0.3046874995343387,
270
+ "reward_std": 0.40682537760585546,
271
+ "rewards/end_of_conversation_reward_func": 0.04296875046566129,
272
+ "rewards/end_rm_reward_func": 0.33203125,
273
+ "rewards/length_reward_func": -0.0703125,
274
+ "rewards/thinking_reward_func": 0.0,
275
+ "step": 21
276
+ },
277
+ {
278
+ "clip_ratio": 0.004059915816469584,
279
+ "epoch": 0.0176,
280
+ "grad_norm": 0.41427480690422763,
281
+ "kl": 0.008981704711914062,
282
+ "learning_rate": 5e-07,
283
+ "loss": 0.042,
284
+ "step": 22
285
+ },
286
+ {
287
+ "clip_ratio": 0.0,
288
+ "completion_length": 3201.0703125,
289
+ "epoch": 0.0184,
290
+ "grad_norm": 0.43906528625565505,
291
+ "kl": 0.0200042724609375,
292
+ "learning_rate": 5e-07,
293
+ "loss": 0.0944,
294
+ "reward": 0.30175782716833055,
295
+ "reward_std": 0.40742881037294865,
296
+ "rewards/end_of_conversation_reward_func": 0.0546875013387762,
297
+ "rewards/end_rm_reward_func": 0.3291015625,
298
+ "rewards/length_reward_func": -0.08203125,
299
+ "rewards/thinking_reward_func": 0.0,
300
+ "step": 23
301
+ },
302
+ {
303
+ "clip_ratio": 0.004639639038941823,
304
+ "epoch": 0.0192,
305
+ "grad_norm": 0.43593248124452694,
306
+ "kl": 0.022314071655273438,
307
+ "learning_rate": 5e-07,
308
+ "loss": 0.0943,
309
+ "step": 24
310
+ },
311
+ {
312
+ "clip_ratio": 0.0,
313
+ "completion_length": 3829.46875,
314
+ "epoch": 0.02,
315
+ "grad_norm": 0.38202405603939055,
316
+ "kl": 0.009199142456054688,
317
+ "learning_rate": 5e-07,
318
+ "loss": 0.1122,
319
+ "reward": 0.16308594099245965,
320
+ "reward_std": 0.5269097108393908,
321
+ "rewards/end_of_conversation_reward_func": 0.04296875064028427,
322
+ "rewards/end_rm_reward_func": 0.2138671875,
323
+ "rewards/length_reward_func": -0.09375,
324
+ "rewards/thinking_reward_func": 0.0,
325
+ "step": 25
326
+ },
327
+ {
328
+ "clip_ratio": 0.003962479371693917,
329
+ "epoch": 0.0208,
330
+ "grad_norm": 0.3735492080285575,
331
+ "kl": 0.010051727294921875,
332
+ "learning_rate": 5e-07,
333
+ "loss": 0.1122,
334
+ "step": 26
335
+ },
336
+ {
337
+ "clip_ratio": 0.0,
338
+ "completion_length": 2547.2109375,
339
+ "epoch": 0.0216,
340
+ "grad_norm": 0.610378722681955,
341
+ "kl": 0.0273590087890625,
342
+ "learning_rate": 5e-07,
343
+ "loss": 0.0282,
344
+ "reward": 0.27187501452863216,
345
+ "reward_std": 0.4403302203863859,
346
+ "rewards/end_of_conversation_reward_func": 0.05703125102445483,
347
+ "rewards/end_rm_reward_func": 0.25,
348
+ "rewards/length_reward_func": -0.03515625,
349
+ "rewards/thinking_reward_func": 0.0,
350
+ "step": 27
351
+ },
352
+ {
353
+ "clip_ratio": 0.005169034717255272,
354
+ "epoch": 0.0224,
355
+ "grad_norm": 0.6320276760824112,
356
+ "kl": 0.0298004150390625,
357
+ "learning_rate": 5e-07,
358
+ "loss": 0.028,
359
+ "step": 28
360
+ },
361
+ {
362
+ "clip_ratio": 0.0,
363
+ "completion_length": 3147.9140625,
364
+ "epoch": 0.0232,
365
+ "grad_norm": 0.48988346522636234,
366
+ "kl": 0.018934249877929688,
367
+ "learning_rate": 5e-07,
368
+ "loss": 0.1053,
369
+ "reward": 0.14648437302093953,
370
+ "reward_std": 0.3592515978962183,
371
+ "rewards/end_of_conversation_reward_func": 0.03906250069849193,
372
+ "rewards/end_rm_reward_func": 0.166015625,
373
+ "rewards/length_reward_func": -0.05859375,
374
+ "rewards/thinking_reward_func": 0.0,
375
+ "step": 29
376
+ },
377
+ {
378
+ "clip_ratio": 0.0043003826576750726,
379
+ "epoch": 0.024,
380
+ "grad_norm": 0.4903022425159312,
381
+ "kl": 0.022472381591796875,
382
+ "learning_rate": 5e-07,
383
+ "loss": 0.1051,
384
+ "step": 30
385
+ },
386
+ {
387
+ "clip_ratio": 0.0,
388
+ "completion_length": 3250.6953125,
389
+ "epoch": 0.0248,
390
+ "grad_norm": 0.4722499061352693,
391
+ "kl": 0.0226593017578125,
392
+ "learning_rate": 5e-07,
393
+ "loss": 0.09,
394
+ "reward": 0.27050781436264515,
395
+ "reward_std": 0.5021275784820318,
396
+ "rewards/end_of_conversation_reward_func": 0.04687500075669959,
397
+ "rewards/end_rm_reward_func": 0.2900390625,
398
+ "rewards/length_reward_func": -0.06640625,
399
+ "rewards/thinking_reward_func": 0.0,
400
+ "step": 31
401
+ },
402
+ {
403
+ "clip_ratio": 0.004512525454629213,
404
+ "epoch": 0.0256,
405
+ "grad_norm": 0.47562899020814536,
406
+ "kl": 0.023143768310546875,
407
+ "learning_rate": 5e-07,
408
+ "loss": 0.09,
409
+ "step": 32
410
+ },
411
+ {
412
+ "clip_ratio": 0.0,
413
+ "completion_length": 2877.4140625,
414
+ "epoch": 0.0264,
415
+ "grad_norm": 0.5889200019558475,
416
+ "kl": 0.029821395874023438,
417
+ "learning_rate": 5e-07,
418
+ "loss": 0.0587,
419
+ "reward": 0.21738281490979716,
420
+ "reward_std": 0.43986387038603425,
421
+ "rewards/end_of_conversation_reward_func": 0.048437500605359674,
422
+ "rewards/end_rm_reward_func": 0.2275390625,
423
+ "rewards/length_reward_func": -0.05859375,
424
+ "rewards/thinking_reward_func": 0.0,
425
+ "step": 33
426
+ },
427
+ {
428
+ "clip_ratio": 0.004839819855988026,
429
+ "epoch": 0.0272,
430
+ "grad_norm": 0.5773456233238853,
431
+ "kl": 0.04634857177734375,
432
+ "learning_rate": 5e-07,
433
+ "loss": 0.0584,
434
+ "step": 34
435
+ },
436
+ {
437
+ "clip_ratio": 0.0,
438
+ "completion_length": 3019.0078125,
439
+ "epoch": 0.028,
440
+ "grad_norm": 0.5859980971392886,
441
+ "kl": 0.05249786376953125,
442
+ "learning_rate": 5e-07,
443
+ "loss": 0.0516,
444
+ "reward": 0.16308594855945557,
445
+ "reward_std": 0.4561401130631566,
446
+ "rewards/end_of_conversation_reward_func": 0.046875000989530236,
447
+ "rewards/end_rm_reward_func": 0.1904296875,
448
+ "rewards/length_reward_func": -0.07421875,
449
+ "rewards/thinking_reward_func": 0.0,
450
+ "step": 35
451
+ },
452
+ {
453
+ "clip_ratio": 0.005565648170886561,
454
+ "epoch": 0.0288,
455
+ "grad_norm": 0.5723337880881523,
456
+ "kl": 0.07667350769042969,
457
+ "learning_rate": 5e-07,
458
+ "loss": 0.0514,
459
+ "step": 36
460
+ },
461
+ {
462
+ "clip_ratio": 0.0,
463
+ "completion_length": 3228.2421875,
464
+ "epoch": 0.0296,
465
+ "grad_norm": 0.44518950059783957,
466
+ "kl": 0.0410919189453125,
467
+ "learning_rate": 5e-07,
468
+ "loss": 0.0187,
469
+ "reward": 0.13417969300644472,
470
+ "reward_std": 0.40079194540157914,
471
+ "rewards/end_of_conversation_reward_func": 0.04531250096624717,
472
+ "rewards/end_rm_reward_func": 0.1240234375,
473
+ "rewards/length_reward_func": -0.03515625,
474
+ "rewards/thinking_reward_func": 0.0,
475
+ "step": 37
476
+ },
477
+ {
478
+ "clip_ratio": 0.003970242956711445,
479
+ "epoch": 0.0304,
480
+ "grad_norm": 0.4361401996932686,
481
+ "kl": 0.03826141357421875,
482
+ "learning_rate": 5e-07,
483
+ "loss": 0.0186,
484
+ "step": 38
485
+ },
486
+ {
487
+ "clip_ratio": 0.0,
488
+ "completion_length": 3131.0546875,
489
+ "epoch": 0.0312,
490
+ "grad_norm": 0.47844256212930125,
491
+ "kl": 0.03959083557128906,
492
+ "learning_rate": 5e-07,
493
+ "loss": 0.0714,
494
+ "reward": 0.19863281957805157,
495
+ "reward_std": 0.46341709420084953,
496
+ "rewards/end_of_conversation_reward_func": 0.04140625090803951,
497
+ "rewards/end_rm_reward_func": 0.2041015625,
498
+ "rewards/length_reward_func": -0.046875,
499
+ "rewards/thinking_reward_func": 0.0,
500
+ "step": 39
501
+ },
502
+ {
503
+ "clip_ratio": 0.004569632888888009,
504
+ "epoch": 0.032,
505
+ "grad_norm": 0.4703050101042975,
506
+ "kl": 0.033267974853515625,
507
+ "learning_rate": 5e-07,
508
+ "loss": 0.0714,
509
+ "step": 40
510
+ },
511
+ {
512
+ "clip_ratio": 0.0,
513
+ "completion_length": 3917.1875,
514
+ "epoch": 0.0328,
515
+ "grad_norm": 0.3673788800178079,
516
+ "kl": 0.046047210693359375,
517
+ "learning_rate": 5e-07,
518
+ "loss": 0.0997,
519
+ "reward": 0.18164063431322575,
520
+ "reward_std": 0.4014846673235297,
521
+ "rewards/end_of_conversation_reward_func": 0.042968751047737896,
522
+ "rewards/end_rm_reward_func": 0.220703125,
523
+ "rewards/length_reward_func": -0.08203125,
524
+ "rewards/thinking_reward_func": 0.0,
525
+ "step": 41
526
+ },
527
+ {
528
+ "clip_ratio": 0.0038312822725856677,
529
+ "epoch": 0.0336,
530
+ "grad_norm": 0.3586932712636358,
531
+ "kl": 0.0465850830078125,
532
+ "learning_rate": 5e-07,
533
+ "loss": 0.0996,
534
+ "step": 42
535
+ },
536
+ {
537
+ "clip_ratio": 0.0,
538
+ "completion_length": 3266.2734375,
539
+ "epoch": 0.0344,
540
+ "grad_norm": 0.5611692724392116,
541
+ "kl": 0.0754852294921875,
542
+ "learning_rate": 5e-07,
543
+ "loss": 0.0169,
544
+ "reward": 0.026171877863816917,
545
+ "reward_std": 0.3950889599509537,
546
+ "rewards/end_of_conversation_reward_func": 0.03593750059371814,
547
+ "rewards/end_rm_reward_func": 0.064453125,
548
+ "rewards/length_reward_func": -0.07421875,
549
+ "rewards/thinking_reward_func": 0.0,
550
+ "step": 43
551
+ },
552
+ {
553
+ "clip_ratio": 0.004459991134353913,
554
+ "epoch": 0.0352,
555
+ "grad_norm": 0.650232454614409,
556
+ "kl": 0.05011749267578125,
557
+ "learning_rate": 5e-07,
558
+ "loss": 0.0168,
559
+ "step": 44
560
+ },
561
+ {
562
+ "clip_ratio": 0.0,
563
+ "completion_length": 3211.5859375,
564
+ "epoch": 0.036,
565
+ "grad_norm": 0.44021307945681076,
566
+ "kl": 0.09033966064453125,
567
+ "learning_rate": 5e-07,
568
+ "loss": 0.0972,
569
+ "reward": 0.2980468822643161,
570
+ "reward_std": 0.4539717771112919,
571
+ "rewards/end_of_conversation_reward_func": 0.0421875006868504,
572
+ "rewards/end_rm_reward_func": 0.314453125,
573
+ "rewards/length_reward_func": -0.05859375,
574
+ "rewards/thinking_reward_func": 0.0,
575
+ "step": 45
576
+ },
577
+ {
578
+ "clip_ratio": 0.004655172117054462,
579
+ "epoch": 0.0368,
580
+ "grad_norm": 0.432964397523799,
581
+ "kl": 0.10763931274414062,
582
+ "learning_rate": 5e-07,
583
+ "loss": 0.0971,
584
+ "step": 46
585
+ },
586
+ {
587
+ "clip_ratio": 0.0,
588
+ "completion_length": 2954.6171875,
589
+ "epoch": 0.0376,
590
+ "grad_norm": 0.506733600693208,
591
+ "kl": 0.080352783203125,
592
+ "learning_rate": 5e-07,
593
+ "loss": 0.1313,
594
+ "reward": 0.1996093881316483,
595
+ "reward_std": 0.4217355151195079,
596
+ "rewards/end_of_conversation_reward_func": 0.04921875084983185,
597
+ "rewards/end_rm_reward_func": 0.224609375,
598
+ "rewards/length_reward_func": -0.07421875,
599
+ "rewards/thinking_reward_func": 0.0,
600
+ "step": 47
601
+ },
602
+ {
603
+ "clip_ratio": 0.00481395295355469,
604
+ "epoch": 0.0384,
605
+ "grad_norm": 0.4925165842097727,
606
+ "kl": 0.09535980224609375,
607
+ "learning_rate": 5e-07,
608
+ "loss": 0.1311,
609
+ "step": 48
610
+ },
611
+ {
612
+ "clip_ratio": 0.0,
613
+ "completion_length": 3474.7890625,
614
+ "epoch": 0.0392,
615
+ "grad_norm": 0.4471083539693922,
616
+ "kl": 0.10435867309570312,
617
+ "learning_rate": 5e-07,
618
+ "loss": 0.1437,
619
+ "reward": 0.32910157029982656,
620
+ "reward_std": 0.508234778419137,
621
+ "rewards/end_of_conversation_reward_func": 0.046875000873114914,
622
+ "rewards/end_rm_reward_func": 0.3525390625,
623
+ "rewards/length_reward_func": -0.0703125,
624
+ "rewards/thinking_reward_func": 0.0,
625
+ "step": 49
626
+ },
627
+ {
628
+ "clip_ratio": 0.0046363398869289085,
629
+ "epoch": 0.04,
630
+ "grad_norm": 0.43209286829846705,
631
+ "kl": 0.17406082153320312,
632
+ "learning_rate": 5e-07,
633
+ "loss": 0.1436,
634
+ "step": 50
635
+ },
636
+ {
637
+ "clip_ratio": 0.0,
638
+ "completion_length": 2888.265625,
639
+ "epoch": 0.0408,
640
+ "grad_norm": 0.5175016713586391,
641
+ "kl": 0.17282867431640625,
642
+ "learning_rate": 5e-07,
643
+ "loss": 0.0991,
644
+ "reward": 0.27207032637670636,
645
+ "reward_std": 0.4736290629953146,
646
+ "rewards/end_of_conversation_reward_func": 0.052343750779982656,
647
+ "rewards/end_rm_reward_func": 0.2705078125,
648
+ "rewards/length_reward_func": -0.05078125,
649
+ "rewards/thinking_reward_func": 0.0,
650
+ "step": 51
651
+ },
652
+ {
653
+ "clip_ratio": 0.005186622860492207,
654
+ "epoch": 0.0416,
655
+ "grad_norm": 0.5022931530008493,
656
+ "kl": 0.64031982421875,
657
+ "learning_rate": 5e-07,
658
+ "loss": 0.0989,
659
+ "step": 52
660
+ },
661
+ {
662
+ "clip_ratio": 0.0,
663
+ "completion_length": 2426.1796875,
664
+ "epoch": 0.0424,
665
+ "grad_norm": 0.6255369968307551,
666
+ "kl": 0.22528839111328125,
667
+ "learning_rate": 5e-07,
668
+ "loss": -0.0125,
669
+ "reward": 0.3054687652620487,
670
+ "reward_std": 0.3840066557750106,
671
+ "rewards/end_of_conversation_reward_func": 0.06328125123400241,
672
+ "rewards/end_rm_reward_func": 0.2734375,
673
+ "rewards/length_reward_func": -0.03125,
674
+ "rewards/thinking_reward_func": 0.0,
675
+ "step": 53
676
+ },
677
+ {
678
+ "clip_ratio": 0.00623530795564875,
679
+ "epoch": 0.0432,
680
+ "grad_norm": 0.6007417569260441,
681
+ "kl": 0.28375244140625,
682
+ "learning_rate": 5e-07,
683
+ "loss": -0.0127,
684
+ "step": 54
685
+ },
686
+ {
687
+ "clip_ratio": 0.0,
688
+ "completion_length": 3665.03125,
689
+ "epoch": 0.044,
690
+ "grad_norm": 0.44582887064322585,
691
+ "kl": 0.31996917724609375,
692
+ "learning_rate": 5e-07,
693
+ "loss": 0.0533,
694
+ "reward": 0.15429688058793545,
695
+ "reward_std": 0.42791955079883337,
696
+ "rewards/end_of_conversation_reward_func": 0.046875000989530236,
697
+ "rewards/end_rm_reward_func": 0.189453125,
698
+ "rewards/length_reward_func": -0.08203125,
699
+ "rewards/thinking_reward_func": 0.0,
700
+ "step": 55
701
+ },
702
+ {
703
+ "clip_ratio": 0.004688024055212736,
704
+ "epoch": 0.0448,
705
+ "grad_norm": 0.4305811562261461,
706
+ "kl": 0.25885772705078125,
707
+ "learning_rate": 5e-07,
708
+ "loss": 0.0533,
709
+ "step": 56
710
+ },
711
+ {
712
+ "clip_ratio": 0.0,
713
+ "completion_length": 3248.5,
714
+ "epoch": 0.0456,
715
+ "grad_norm": 0.4802130548748173,
716
+ "kl": 1.8993988037109375,
717
+ "learning_rate": 5e-07,
718
+ "loss": -0.0111,
719
+ "reward": 0.23535156849538907,
720
+ "reward_std": 0.49618958681821823,
721
+ "rewards/end_of_conversation_reward_func": 0.05078125128056854,
722
+ "rewards/end_rm_reward_func": 0.2275390625,
723
+ "rewards/length_reward_func": -0.04296875,
724
+ "rewards/thinking_reward_func": 0.0,
725
+ "step": 57
726
+ },
727
+ {
728
+ "clip_ratio": 0.005161113862413913,
729
+ "epoch": 0.0464,
730
+ "grad_norm": 0.4715970994501386,
731
+ "kl": 2.4185791015625,
732
+ "learning_rate": 5e-07,
733
+ "loss": -0.0113,
734
+ "step": 58
735
+ },
736
+ {
737
+ "clip_ratio": 0.0,
738
+ "completion_length": 3355.9921875,
739
+ "epoch": 0.0472,
740
+ "grad_norm": 0.4817763963120568,
741
+ "kl": 3.2315750122070312,
742
+ "learning_rate": 5e-07,
743
+ "loss": 0.1374,
744
+ "reward": 0.1996093873749487,
745
+ "reward_std": 0.39307427662424743,
746
+ "rewards/end_of_conversation_reward_func": 0.04921875096624717,
747
+ "rewards/end_rm_reward_func": 0.212890625,
748
+ "rewards/length_reward_func": -0.0625,
749
+ "rewards/thinking_reward_func": 0.0,
750
+ "step": 59
751
+ },
752
+ {
753
+ "clip_ratio": 0.004419020988279954,
754
+ "epoch": 0.048,
755
+ "grad_norm": 0.4663422707726828,
756
+ "kl": 1.4642868041992188,
757
+ "learning_rate": 5e-07,
758
+ "loss": 0.1374,
759
+ "step": 60
760
+ },
761
+ {
762
+ "clip_ratio": 0.0,
763
+ "completion_length": 2897.2890625,
764
+ "epoch": 0.0488,
765
+ "grad_norm": 0.588164762943858,
766
+ "kl": 0.23455047607421875,
767
+ "learning_rate": 5e-07,
768
+ "loss": 0.0579,
769
+ "reward": 0.2761718816473149,
770
+ "reward_std": 0.4508576055523008,
771
+ "rewards/end_of_conversation_reward_func": 0.051562500884756446,
772
+ "rewards/end_rm_reward_func": 0.251953125,
773
+ "rewards/length_reward_func": -0.02734375,
774
+ "rewards/thinking_reward_func": 0.0,
775
+ "step": 61
776
+ },
777
+ {
778
+ "clip_ratio": 0.005412581740529276,
779
+ "epoch": 0.0496,
780
+ "grad_norm": 0.5649279212366,
781
+ "kl": 0.44388580322265625,
782
+ "learning_rate": 5e-07,
783
+ "loss": 0.0579,
784
+ "step": 62
785
+ },
786
+ {
787
+ "clip_ratio": 0.0,
788
+ "completion_length": 2572.625,
789
+ "epoch": 0.0504,
790
+ "grad_norm": 0.7907651458985474,
791
+ "kl": 38.2191162109375,
792
+ "learning_rate": 5e-07,
793
+ "loss": 0.0775,
794
+ "reward": 0.24921876098960638,
795
+ "reward_std": 0.4261420601978898,
796
+ "rewards/end_of_conversation_reward_func": 0.05781250057043508,
797
+ "rewards/end_rm_reward_func": 0.22265625,
798
+ "rewards/length_reward_func": -0.03125,
799
+ "rewards/thinking_reward_func": 0.0,
800
+ "step": 63
801
+ },
802
+ {
803
+ "clip_ratio": 0.005620055002509616,
804
+ "epoch": 0.0512,
805
+ "grad_norm": 0.6418001802934817,
806
+ "kl": 15.695816040039062,
807
+ "learning_rate": 5e-07,
808
+ "loss": 0.0772,
809
+ "step": 64
810
+ },
811
+ {
812
+ "clip_ratio": 0.0,
813
+ "completion_length": 2276.734375,
814
+ "epoch": 0.052,
815
+ "grad_norm": 0.665222722206486,
816
+ "kl": 0.13232421875,
817
+ "learning_rate": 5e-07,
818
+ "loss": 0.0409,
819
+ "reward": 0.40312501695007086,
820
+ "reward_std": 0.4724201774224639,
821
+ "rewards/end_of_conversation_reward_func": 0.06718750135041773,
822
+ "rewards/end_rm_reward_func": 0.36328125,
823
+ "rewards/length_reward_func": -0.02734375,
824
+ "rewards/thinking_reward_func": 0.0,
825
+ "step": 65
826
+ },
827
+ {
828
+ "clip_ratio": 0.005610677297227085,
829
+ "epoch": 0.0528,
830
+ "grad_norm": 0.5939092022405507,
831
+ "kl": 0.1356201171875,
832
+ "learning_rate": 5e-07,
833
+ "loss": 0.0405,
834
+ "step": 66
835
+ },
836
+ {
837
+ "clip_ratio": 0.0,
838
+ "completion_length": 2571.578125,
839
+ "epoch": 0.0536,
840
+ "grad_norm": 0.5313848515306442,
841
+ "kl": 0.2240753173828125,
842
+ "learning_rate": 5e-07,
843
+ "loss": 0.1096,
844
+ "reward": 0.3613281352445483,
845
+ "reward_std": 0.5025414768606424,
846
+ "rewards/end_of_conversation_reward_func": 0.05859375069849193,
847
+ "rewards/end_rm_reward_func": 0.349609375,
848
+ "rewards/length_reward_func": -0.046875,
849
+ "rewards/thinking_reward_func": 0.0,
850
+ "step": 67
851
+ },
852
+ {
853
+ "clip_ratio": 0.005505270150024444,
854
+ "epoch": 0.0544,
855
+ "grad_norm": 0.5239589241494494,
856
+ "kl": 0.351348876953125,
857
+ "learning_rate": 5e-07,
858
+ "loss": 0.1093,
859
+ "step": 68
860
+ },
861
+ {
862
+ "clip_ratio": 0.0,
863
+ "completion_length": 2831.0625,
864
+ "epoch": 0.0552,
865
+ "grad_norm": 0.5445532025053365,
866
+ "kl": 0.248504638671875,
867
+ "learning_rate": 5e-07,
868
+ "loss": 0.0613,
869
+ "reward": 0.22050781839061528,
870
+ "reward_std": 0.4537838753312826,
871
+ "rewards/end_of_conversation_reward_func": 0.05156250129221007,
872
+ "rewards/end_rm_reward_func": 0.2275390625,
873
+ "rewards/length_reward_func": -0.05859375,
874
+ "rewards/thinking_reward_func": 0.0,
875
+ "step": 69
876
+ },
877
+ {
878
+ "clip_ratio": 0.00578475151269231,
879
+ "epoch": 0.056,
880
+ "grad_norm": 0.5324428626427173,
881
+ "kl": 0.200439453125,
882
+ "learning_rate": 5e-07,
883
+ "loss": 0.0611,
884
+ "step": 70
885
+ },
886
+ {
887
+ "clip_ratio": 0.0,
888
+ "completion_length": 2407.078125,
889
+ "epoch": 0.0568,
890
+ "grad_norm": 0.7082243961454275,
891
+ "kl": 0.5781097412109375,
892
+ "learning_rate": 5e-07,
893
+ "loss": 0.0656,
894
+ "reward": 0.44589844811707735,
895
+ "reward_std": 0.4496405338868499,
896
+ "rewards/end_of_conversation_reward_func": 0.0640625013038516,
897
+ "rewards/end_rm_reward_func": 0.4091796875,
898
+ "rewards/length_reward_func": -0.02734375,
899
+ "rewards/thinking_reward_func": 0.0,
900
+ "step": 71
901
+ },
902
+ {
903
+ "clip_ratio": 0.006228098354768008,
904
+ "epoch": 0.0576,
905
+ "grad_norm": 0.6279502761796933,
906
+ "kl": 0.60986328125,
907
+ "learning_rate": 5e-07,
908
+ "loss": 0.0654,
909
+ "step": 72
910
+ },
911
+ {
912
+ "clip_ratio": 0.0,
913
+ "completion_length": 2754.171875,
914
+ "epoch": 0.0584,
915
+ "grad_norm": 0.6511514863553758,
916
+ "kl": 0.6928863525390625,
917
+ "learning_rate": 5e-07,
918
+ "loss": 0.0478,
919
+ "reward": 0.26621094363508746,
920
+ "reward_std": 0.3944235248491168,
921
+ "rewards/end_of_conversation_reward_func": 0.06015625048894435,
922
+ "rewards/end_rm_reward_func": 0.2451171875,
923
+ "rewards/length_reward_func": -0.0390625,
924
+ "rewards/thinking_reward_func": 0.0,
925
+ "step": 73
926
+ },
927
+ {
928
+ "clip_ratio": 0.005119593348354101,
929
+ "epoch": 0.0592,
930
+ "grad_norm": 0.5405583476661738,
931
+ "kl": 0.45965576171875,
932
+ "learning_rate": 5e-07,
933
+ "loss": 0.0477,
934
+ "step": 74
935
+ },
936
+ {
937
+ "clip_ratio": 0.0,
938
+ "completion_length": 2714.515625,
939
+ "epoch": 0.06,
940
+ "grad_norm": 0.5541156231836364,
941
+ "kl": 1.046234130859375,
942
+ "learning_rate": 5e-07,
943
+ "loss": 0.0652,
944
+ "reward": 0.26230468694120646,
945
+ "reward_std": 0.4206010536290705,
946
+ "rewards/end_of_conversation_reward_func": 0.05234375054715201,
947
+ "rewards/end_rm_reward_func": 0.2373046875,
948
+ "rewards/length_reward_func": -0.02734375,
949
+ "rewards/thinking_reward_func": 0.0,
950
+ "step": 75
951
+ },
952
+ {
953
+ "clip_ratio": 0.005520118284039199,
954
+ "epoch": 0.0608,
955
+ "grad_norm": 0.5198654147754546,
956
+ "kl": 0.9281158447265625,
957
+ "learning_rate": 5e-07,
958
+ "loss": 0.0651,
959
+ "step": 76
960
+ },
961
+ {
962
+ "clip_ratio": 0.0,
963
+ "completion_length": 2761.2578125,
964
+ "epoch": 0.0616,
965
+ "grad_norm": 0.5969632201148187,
966
+ "kl": 0.617431640625,
967
+ "learning_rate": 5e-07,
968
+ "loss": 0.0339,
969
+ "reward": 0.30253906978759915,
970
+ "reward_std": 0.42008747160434723,
971
+ "rewards/end_of_conversation_reward_func": 0.059375002048909664,
972
+ "rewards/end_rm_reward_func": 0.2744140625,
973
+ "rewards/length_reward_func": -0.03125,
974
+ "rewards/thinking_reward_func": 0.0,
975
+ "step": 77
976
+ },
977
+ {
978
+ "clip_ratio": 0.005989336816128343,
979
+ "epoch": 0.0624,
980
+ "grad_norm": 0.5878458096207411,
981
+ "kl": 0.732513427734375,
982
+ "learning_rate": 5e-07,
983
+ "loss": 0.0337,
984
+ "step": 78
985
+ },
986
+ {
987
+ "clip_ratio": 0.0,
988
+ "completion_length": 2543.9453125,
989
+ "epoch": 0.0632,
990
+ "grad_norm": 1.0199433093137067,
991
+ "kl": 1.05322265625,
992
+ "learning_rate": 5e-07,
993
+ "loss": 0.0652,
994
+ "reward": 0.23144532518927008,
995
+ "reward_std": 0.4124359574634582,
996
+ "rewards/end_of_conversation_reward_func": 0.06640625139698386,
997
+ "rewards/end_rm_reward_func": 0.2236328125,
998
+ "rewards/length_reward_func": -0.05859375,
999
+ "rewards/thinking_reward_func": 0.0,
1000
+ "step": 79
1001
+ },
1002
+ {
1003
+ "clip_ratio": 0.005892957837204449,
1004
+ "epoch": 0.064,
1005
+ "grad_norm": 0.9103349241587038,
1006
+ "kl": 2.14288330078125,
1007
+ "learning_rate": 5e-07,
1008
+ "loss": 0.0649,
1009
+ "step": 80
1010
+ },
1011
+ {
1012
+ "clip_ratio": 0.0,
1013
+ "completion_length": 3057.0546875,
1014
+ "epoch": 0.0648,
1015
+ "grad_norm": 1.4360222564196798,
1016
+ "kl": 1.4345703125,
1017
+ "learning_rate": 5e-07,
1018
+ "loss": 0.0872,
1019
+ "reward": 0.21894532290752977,
1020
+ "reward_std": 0.44305523252114654,
1021
+ "rewards/end_of_conversation_reward_func": 0.053906250395812094,
1022
+ "rewards/end_rm_reward_func": 0.2197265625,
1023
+ "rewards/length_reward_func": -0.0546875,
1024
+ "rewards/thinking_reward_func": 0.0,
1025
+ "step": 81
1026
+ },
1027
+ {
1028
+ "clip_ratio": 0.005477508588228375,
1029
+ "epoch": 0.0656,
1030
+ "grad_norm": 1.0247564904674444,
1031
+ "kl": 1.27581787109375,
1032
+ "learning_rate": 5e-07,
1033
+ "loss": 0.0865,
1034
+ "step": 82
1035
+ },
1036
+ {
1037
+ "clip_ratio": 0.0,
1038
+ "completion_length": 2772.40625,
1039
+ "epoch": 0.0664,
1040
+ "grad_norm": 0.7761581493328232,
1041
+ "kl": 3.468292236328125,
1042
+ "learning_rate": 5e-07,
1043
+ "loss": 0.0878,
1044
+ "reward": 0.260742200887762,
1045
+ "reward_std": 0.4183371504768729,
1046
+ "rewards/end_of_conversation_reward_func": 0.05468750174622983,
1047
+ "rewards/end_rm_reward_func": 0.2646484375,
1048
+ "rewards/length_reward_func": -0.05859375,
1049
+ "rewards/thinking_reward_func": 0.0,
1050
+ "step": 83
1051
+ },
1052
+ {
1053
+ "clip_ratio": 0.006108275701990351,
1054
+ "epoch": 0.0672,
1055
+ "grad_norm": 0.6445774473316636,
1056
+ "kl": 3.2357177734375,
1057
+ "learning_rate": 5e-07,
1058
+ "loss": 0.0874,
1059
+ "step": 84
1060
+ },
1061
+ {
1062
+ "clip_ratio": 0.0,
1063
+ "completion_length": 2965.75,
1064
+ "epoch": 0.068,
1065
+ "grad_norm": 0.5452316944081127,
1066
+ "kl": 1.18096923828125,
1067
+ "learning_rate": 5e-07,
1068
+ "loss": 0.0644,
1069
+ "reward": 0.19003907265141606,
1070
+ "reward_std": 0.41479692701250315,
1071
+ "rewards/end_of_conversation_reward_func": 0.05625000095460564,
1072
+ "rewards/end_rm_reward_func": 0.1767578125,
1073
+ "rewards/length_reward_func": -0.04296875,
1074
+ "rewards/thinking_reward_func": 0.0,
1075
+ "step": 85
1076
+ },
1077
+ {
1078
+ "clip_ratio": 0.005549885943764821,
1079
+ "epoch": 0.0688,
1080
+ "grad_norm": 0.5370859324762662,
1081
+ "kl": 1.083465576171875,
1082
+ "learning_rate": 5e-07,
1083
+ "loss": 0.0644,
1084
+ "step": 86
1085
+ },
1086
+ {
1087
+ "clip_ratio": 0.0,
1088
+ "completion_length": 2448.203125,
1089
+ "epoch": 0.0696,
1090
+ "grad_norm": 0.665995849204049,
1091
+ "kl": 0.88134765625,
1092
+ "learning_rate": 5e-07,
1093
+ "loss": 0.0717,
1094
+ "reward": 0.37382814288139343,
1095
+ "reward_std": 0.43495669635012746,
1096
+ "rewards/end_of_conversation_reward_func": 0.05937500041909516,
1097
+ "rewards/end_rm_reward_func": 0.330078125,
1098
+ "rewards/length_reward_func": -0.015625,
1099
+ "rewards/thinking_reward_func": 0.0,
1100
+ "step": 87
1101
+ },
1102
+ {
1103
+ "clip_ratio": 0.006831952749053016,
1104
+ "epoch": 0.0704,
1105
+ "grad_norm": 0.6138460891472821,
1106
+ "kl": 0.7757568359375,
1107
+ "learning_rate": 5e-07,
1108
+ "loss": 0.0715,
1109
+ "step": 88
1110
+ },
1111
+ {
1112
+ "clip_ratio": 0.0,
1113
+ "completion_length": 2844.96875,
1114
+ "epoch": 0.0712,
1115
+ "grad_norm": 39.91934775938643,
1116
+ "kl": 7.2490234375,
1117
+ "learning_rate": 5e-07,
1118
+ "loss": 0.0724,
1119
+ "reward": 0.2925781449303031,
1120
+ "reward_std": 0.37382530118338764,
1121
+ "rewards/end_of_conversation_reward_func": 0.06015625153668225,
1122
+ "rewards/end_rm_reward_func": 0.279296875,
1123
+ "rewards/length_reward_func": -0.046875,
1124
+ "rewards/thinking_reward_func": 0.0,
1125
+ "step": 89
1126
+ },
1127
+ {
1128
+ "clip_ratio": 0.005283550621243194,
1129
+ "epoch": 0.072,
1130
+ "grad_norm": 2.874374713759721,
1131
+ "kl": 2.914276123046875,
1132
+ "learning_rate": 5e-07,
1133
+ "loss": 0.0605,
1134
+ "step": 90
1135
+ },
1136
+ {
1137
+ "clip_ratio": 0.0,
1138
+ "completion_length": 2769.65625,
1139
+ "epoch": 0.0728,
1140
+ "grad_norm": 0.7216272604731127,
1141
+ "kl": 15.577178955078125,
1142
+ "learning_rate": 5e-07,
1143
+ "loss": 0.0653,
1144
+ "reward": 0.21445313305594027,
1145
+ "reward_std": 0.3568238094449043,
1146
+ "rewards/end_of_conversation_reward_func": 0.056250000779982656,
1147
+ "rewards/end_rm_reward_func": 0.201171875,
1148
+ "rewards/length_reward_func": -0.04296875,
1149
+ "rewards/thinking_reward_func": 0.0,
1150
+ "step": 91
1151
+ },
1152
+ {
1153
+ "clip_ratio": 0.006356269208481535,
1154
+ "epoch": 0.0736,
1155
+ "grad_norm": 0.657422156714835,
1156
+ "kl": 3.359100341796875,
1157
+ "learning_rate": 5e-07,
1158
+ "loss": 0.0652,
1159
+ "step": 92
1160
+ },
1161
+ {
1162
+ "clip_ratio": 0.0,
1163
+ "completion_length": 2521.03125,
1164
+ "epoch": 0.0744,
1165
+ "grad_norm": 0.5916805123057853,
1166
+ "kl": 6.11346435546875,
1167
+ "learning_rate": 5e-07,
1168
+ "loss": 0.0434,
1169
+ "reward": 0.3089843865018338,
1170
+ "reward_std": 0.42485503386706114,
1171
+ "rewards/end_of_conversation_reward_func": 0.05703125149011612,
1172
+ "rewards/end_rm_reward_func": 0.275390625,
1173
+ "rewards/length_reward_func": -0.0234375,
1174
+ "rewards/thinking_reward_func": 0.0,
1175
+ "step": 93
1176
+ },
1177
+ {
1178
+ "clip_ratio": 0.00618546042824164,
1179
+ "epoch": 0.0752,
1180
+ "grad_norm": 0.5823172792796925,
1181
+ "kl": 7.6622314453125,
1182
+ "learning_rate": 5e-07,
1183
+ "loss": 0.0433,
1184
+ "step": 94
1185
+ },
1186
+ {
1187
+ "clip_ratio": 0.0,
1188
+ "completion_length": 2846.6015625,
1189
+ "epoch": 0.076,
1190
+ "grad_norm": 7.8688189093488035,
1191
+ "kl": 11.725372314453125,
1192
+ "learning_rate": 5e-07,
1193
+ "loss": 0.0675,
1194
+ "reward": 0.2693359488621354,
1195
+ "reward_std": 0.41367775388062,
1196
+ "rewards/end_of_conversation_reward_func": 0.05937500059371814,
1197
+ "rewards/end_rm_reward_func": 0.2724609375,
1198
+ "rewards/length_reward_func": -0.0625,
1199
+ "rewards/thinking_reward_func": 0.0,
1200
+ "step": 95
1201
+ },
1202
+ {
1203
+ "clip_ratio": 0.005790801937109791,
1204
+ "epoch": 0.0768,
1205
+ "grad_norm": 3.368525315890326,
1206
+ "kl": 13.3575439453125,
1207
+ "learning_rate": 5e-07,
1208
+ "loss": 0.0631,
1209
+ "step": 96
1210
+ },
1211
+ {
1212
+ "clip_ratio": 0.0,
1213
+ "completion_length": 2476.9765625,
1214
+ "epoch": 0.0776,
1215
+ "grad_norm": 0.7030982161718689,
1216
+ "kl": 1.7344970703125,
1217
+ "learning_rate": 5e-07,
1218
+ "loss": 0.0428,
1219
+ "reward": 0.21621094946749508,
1220
+ "reward_std": 0.35986063024029136,
1221
+ "rewards/end_of_conversation_reward_func": 0.07265625102445483,
1222
+ "rewards/end_rm_reward_func": 0.1708984375,
1223
+ "rewards/length_reward_func": -0.02734375,
1224
+ "rewards/thinking_reward_func": 0.0,
1225
+ "step": 97
1226
+ },
1227
+ {
1228
+ "clip_ratio": 0.0070846437884029,
1229
+ "epoch": 0.0784,
1230
+ "grad_norm": 0.7129163912479551,
1231
+ "kl": 1.77899169921875,
1232
+ "learning_rate": 5e-07,
1233
+ "loss": 0.0427,
1234
+ "step": 98
1235
+ },
1236
+ {
1237
+ "clip_ratio": 0.0,
1238
+ "completion_length": 2593.5234375,
1239
+ "epoch": 0.0792,
1240
+ "grad_norm": 0.7859235708182953,
1241
+ "kl": 2.969696044921875,
1242
+ "learning_rate": 5e-07,
1243
+ "loss": 0.1376,
1244
+ "reward": 0.32734376145526767,
1245
+ "reward_std": 0.288719222182408,
1246
+ "rewards/end_of_conversation_reward_func": 0.06171875155996531,
1247
+ "rewards/end_rm_reward_func": 0.30859375,
1248
+ "rewards/length_reward_func": -0.04296875,
1249
+ "rewards/thinking_reward_func": 0.0,
1250
+ "step": 99
1251
+ },
1252
+ {
1253
+ "clip_ratio": 0.0061235044413479045,
1254
+ "epoch": 0.08,
1255
+ "grad_norm": 0.6828444160836236,
1256
+ "kl": 2.0836181640625,
1257
+ "learning_rate": 5e-07,
1258
+ "loss": 0.1373,
1259
+ "step": 100
1260
+ },
1261
+ {
1262
+ "clip_ratio": 0.0,
1263
+ "completion_length": 2805.28125,
1264
+ "epoch": 0.0808,
1265
+ "grad_norm": 0.5849174504978679,
1266
+ "kl": 1.0841064453125,
1267
+ "learning_rate": 5e-07,
1268
+ "loss": 0.0062,
1269
+ "reward": 0.21914063394069672,
1270
+ "reward_std": 0.43392230197787285,
1271
+ "rewards/end_of_conversation_reward_func": 0.05312500067520887,
1272
+ "rewards/end_rm_reward_func": 0.189453125,
1273
+ "rewards/length_reward_func": -0.0234375,
1274
+ "rewards/thinking_reward_func": 0.0,
1275
+ "step": 101
1276
+ },
1277
+ {
1278
+ "clip_ratio": 0.0056501738872611895,
1279
+ "epoch": 0.0816,
1280
+ "grad_norm": 0.5867282574139662,
1281
+ "kl": 0.767822265625,
1282
+ "learning_rate": 5e-07,
1283
+ "loss": 0.006,
1284
+ "step": 102
1285
+ },
1286
+ {
1287
+ "clip_ratio": 0.0,
1288
+ "completion_length": 2540.4609375,
1289
+ "epoch": 0.0824,
1290
+ "grad_norm": 0.6250029445368647,
1291
+ "kl": 2.111724853515625,
1292
+ "learning_rate": 5e-07,
1293
+ "loss": 0.0241,
1294
+ "reward": 0.29882813175208867,
1295
+ "reward_std": 0.4388907542452216,
1296
+ "rewards/end_of_conversation_reward_func": 0.06250000087311491,
1297
+ "rewards/end_rm_reward_func": 0.271484375,
1298
+ "rewards/length_reward_func": -0.03515625,
1299
+ "rewards/thinking_reward_func": 0.0,
1300
+ "step": 103
1301
+ },
1302
+ {
1303
+ "clip_ratio": 0.005285024351906031,
1304
+ "epoch": 0.0832,
1305
+ "grad_norm": 0.6215749933523446,
1306
+ "kl": 2.1219482421875,
1307
+ "learning_rate": 5e-07,
1308
+ "loss": 0.0238,
1309
+ "step": 104
1310
+ },
1311
+ {
1312
+ "clip_ratio": 0.0,
1313
+ "completion_length": 3044.0,
1314
+ "epoch": 0.084,
1315
+ "grad_norm": 0.6597779710468328,
1316
+ "kl": 6.86090087890625,
1317
+ "learning_rate": 5e-07,
1318
+ "loss": 0.1377,
1319
+ "reward": 0.13828126178123057,
1320
+ "reward_std": 0.43175367498770356,
1321
+ "rewards/end_of_conversation_reward_func": 0.056250001303851604,
1322
+ "rewards/end_rm_reward_func": 0.140625,
1323
+ "rewards/length_reward_func": -0.05859375,
1324
+ "rewards/thinking_reward_func": 0.0,
1325
+ "step": 105
1326
+ },
1327
+ {
1328
+ "clip_ratio": 0.005206686502788216,
1329
+ "epoch": 0.0848,
1330
+ "grad_norm": 0.5942518563284648,
1331
+ "kl": 2.425811767578125,
1332
+ "learning_rate": 5e-07,
1333
+ "loss": 0.1374,
1334
+ "step": 106
1335
+ },
1336
+ {
1337
+ "clip_ratio": 0.0,
1338
+ "completion_length": 2281.328125,
1339
+ "epoch": 0.0856,
1340
+ "grad_norm": 0.7014488445783061,
1341
+ "kl": 0.6387939453125,
1342
+ "learning_rate": 5e-07,
1343
+ "loss": -0.0217,
1344
+ "reward": 0.2966797042172402,
1345
+ "reward_std": 0.4203540254384279,
1346
+ "rewards/end_of_conversation_reward_func": 0.059375001466833055,
1347
+ "rewards/end_rm_reward_func": 0.2685546875,
1348
+ "rewards/length_reward_func": -0.03125,
1349
+ "rewards/thinking_reward_func": 0.0,
1350
+ "step": 107
1351
+ },
1352
+ {
1353
+ "clip_ratio": 0.005974609957775101,
1354
+ "epoch": 0.0864,
1355
+ "grad_norm": 0.6586072574619627,
1356
+ "kl": 0.62811279296875,
1357
+ "learning_rate": 5e-07,
1358
+ "loss": -0.022,
1359
+ "step": 108
1360
+ },
1361
+ {
1362
+ "clip_ratio": 0.0,
1363
+ "completion_length": 2565.8515625,
1364
+ "epoch": 0.0872,
1365
+ "grad_norm": 0.644914441904026,
1366
+ "kl": 6.9007568359375,
1367
+ "learning_rate": 5e-07,
1368
+ "loss": 0.0398,
1369
+ "reward": 0.3605468962341547,
1370
+ "reward_std": 0.3907069666311145,
1371
+ "rewards/end_of_conversation_reward_func": 0.0617187509778887,
1372
+ "rewards/end_rm_reward_func": 0.345703125,
1373
+ "rewards/length_reward_func": -0.046875,
1374
+ "rewards/thinking_reward_func": 0.0,
1375
+ "step": 109
1376
+ },
1377
+ {
1378
+ "clip_ratio": 0.005732855395763181,
1379
+ "epoch": 0.088,
1380
+ "grad_norm": 0.6042885460634405,
1381
+ "kl": 14.75518798828125,
1382
+ "learning_rate": 5e-07,
1383
+ "loss": 0.0394,
1384
+ "step": 110
1385
+ },
1386
+ {
1387
+ "clip_ratio": 0.0,
1388
+ "completion_length": 2593.7109375,
1389
+ "epoch": 0.0888,
1390
+ "grad_norm": 0.7580136412646703,
1391
+ "kl": 194.23867797851562,
1392
+ "learning_rate": 5e-07,
1393
+ "loss": 0.0145,
1394
+ "reward": 0.3703125170432031,
1395
+ "reward_std": 0.4818801307119429,
1396
+ "rewards/end_of_conversation_reward_func": 0.06953125121071935,
1397
+ "rewards/end_rm_reward_func": 0.33984375,
1398
+ "rewards/length_reward_func": -0.0390625,
1399
+ "rewards/thinking_reward_func": 0.0,
1400
+ "step": 111
1401
+ },
1402
+ {
1403
+ "clip_ratio": 0.0058185750094708055,
1404
+ "epoch": 0.0896,
1405
+ "grad_norm": 0.707059333498124,
1406
+ "kl": 93.26089477539062,
1407
+ "learning_rate": 5e-07,
1408
+ "loss": 0.014,
1409
+ "step": 112
1410
+ },
1411
+ {
1412
+ "clip_ratio": 0.0,
1413
+ "completion_length": 2752.3046875,
1414
+ "epoch": 0.0904,
1415
+ "grad_norm": 1.2282513544713536,
1416
+ "kl": 282.3605651855469,
1417
+ "learning_rate": 5e-07,
1418
+ "loss": -0.0203,
1419
+ "reward": 0.22753907297737896,
1420
+ "reward_std": 0.3849699907004833,
1421
+ "rewards/end_of_conversation_reward_func": 0.06250000139698386,
1422
+ "rewards/end_rm_reward_func": 0.2158203125,
1423
+ "rewards/length_reward_func": -0.05078125,
1424
+ "rewards/thinking_reward_func": 0.0,
1425
+ "step": 113
1426
+ },
1427
+ {
1428
+ "clip_ratio": 0.006134674651548266,
1429
+ "epoch": 0.0912,
1430
+ "grad_norm": 0.659663811454641,
1431
+ "kl": 1257.621337890625,
1432
+ "learning_rate": 5e-07,
1433
+ "loss": -0.021,
1434
+ "step": 114
1435
+ },
1436
+ {
1437
+ "clip_ratio": 0.0,
1438
+ "completion_length": 2639.4375,
1439
+ "epoch": 0.092,
1440
+ "grad_norm": 0.7161070250692486,
1441
+ "kl": 3.4075927734375,
1442
+ "learning_rate": 5e-07,
1443
+ "loss": 0.0562,
1444
+ "reward": 0.279296881868504,
1445
+ "reward_std": 0.36566486582159996,
1446
+ "rewards/end_of_conversation_reward_func": 0.06250000069849193,
1447
+ "rewards/end_rm_reward_func": 0.244140625,
1448
+ "rewards/length_reward_func": -0.02734375,
1449
+ "rewards/thinking_reward_func": 0.0,
1450
+ "step": 115
1451
+ },
1452
+ {
1453
+ "clip_ratio": 0.005702364520402625,
1454
+ "epoch": 0.0928,
1455
+ "grad_norm": 0.7521060467303439,
1456
+ "kl": 2.76971435546875,
1457
+ "learning_rate": 5e-07,
1458
+ "loss": 0.056,
1459
+ "step": 116
1460
+ },
1461
+ {
1462
+ "clip_ratio": 0.0,
1463
+ "completion_length": 2755.171875,
1464
+ "epoch": 0.0936,
1465
+ "grad_norm": 0.5773097594300078,
1466
+ "kl": 1.43548583984375,
1467
+ "learning_rate": 5e-07,
1468
+ "loss": 0.0308,
1469
+ "reward": 0.28496095119044185,
1470
+ "reward_std": 0.44529066514223814,
1471
+ "rewards/end_of_conversation_reward_func": 0.07109375135041773,
1472
+ "rewards/end_rm_reward_func": 0.2412109375,
1473
+ "rewards/length_reward_func": -0.02734375,
1474
+ "rewards/thinking_reward_func": 0.0,
1475
+ "step": 117
1476
+ },
1477
+ {
1478
+ "clip_ratio": 0.00540813866246026,
1479
+ "epoch": 0.0944,
1480
+ "grad_norm": 0.5453752455228841,
1481
+ "kl": 1.4910888671875,
1482
+ "learning_rate": 5e-07,
1483
+ "loss": 0.0306,
1484
+ "step": 118
1485
+ },
1486
+ {
1487
+ "clip_ratio": 0.0,
1488
+ "completion_length": 2547.6640625,
1489
+ "epoch": 0.0952,
1490
+ "grad_norm": 0.7741674220919301,
1491
+ "kl": 3.27825927734375,
1492
+ "learning_rate": 5e-07,
1493
+ "loss": 0.0425,
1494
+ "reward": 0.3609375129453838,
1495
+ "reward_std": 0.5046179071068764,
1496
+ "rewards/end_of_conversation_reward_func": 0.05625000031432137,
1497
+ "rewards/end_rm_reward_func": 0.3515625,
1498
+ "rewards/length_reward_func": -0.046875,
1499
+ "rewards/thinking_reward_func": 0.0,
1500
+ "step": 119
1501
+ },
1502
+ {
1503
+ "clip_ratio": 0.005344324657926336,
1504
+ "epoch": 0.096,
1505
+ "grad_norm": 0.6695041005132681,
1506
+ "kl": 3.209014892578125,
1507
+ "learning_rate": 5e-07,
1508
+ "loss": 0.0421,
1509
+ "step": 120
1510
+ },
1511
+ {
1512
+ "clip_ratio": 0.0,
1513
+ "completion_length": 2054.7734375,
1514
+ "epoch": 0.0968,
1515
+ "grad_norm": 0.6599312097182909,
1516
+ "kl": 1.108734130859375,
1517
+ "learning_rate": 5e-07,
1518
+ "loss": 0.0745,
1519
+ "reward": 0.48066408233717084,
1520
+ "reward_std": 0.41660537058487535,
1521
+ "rewards/end_of_conversation_reward_func": 0.06562500132713467,
1522
+ "rewards/end_rm_reward_func": 0.4501953125,
1523
+ "rewards/length_reward_func": -0.03515625,
1524
+ "rewards/thinking_reward_func": 0.0,
1525
+ "step": 121
1526
+ },
1527
+ {
1528
+ "clip_ratio": 0.005748817842686549,
1529
+ "epoch": 0.0976,
1530
+ "grad_norm": 0.6350464464579841,
1531
+ "kl": 1.254302978515625,
1532
+ "learning_rate": 5e-07,
1533
+ "loss": 0.0742,
1534
+ "step": 122
1535
+ },
1536
+ {
1537
+ "clip_ratio": 0.0,
1538
+ "completion_length": 2930.9453125,
1539
+ "epoch": 0.0984,
1540
+ "grad_norm": 0.5357408536545809,
1541
+ "kl": 1.457122802734375,
1542
+ "learning_rate": 5e-07,
1543
+ "loss": 0.0746,
1544
+ "reward": 0.3414062693482265,
1545
+ "reward_std": 0.4845976228825748,
1546
+ "rewards/end_of_conversation_reward_func": 0.056250001420266926,
1547
+ "rewards/end_rm_reward_func": 0.3125,
1548
+ "rewards/length_reward_func": -0.02734375,
1549
+ "rewards/thinking_reward_func": 0.0,
1550
+ "step": 123
1551
+ },
1552
+ {
1553
+ "clip_ratio": 0.0055590872943867,
1554
+ "epoch": 0.0992,
1555
+ "grad_norm": 0.48529125845684484,
1556
+ "kl": 3.254119873046875,
1557
+ "learning_rate": 5e-07,
1558
+ "loss": 0.0744,
1559
+ "step": 124
1560
+ },
1561
+ {
1562
+ "clip_ratio": 0.0,
1563
+ "completion_length": 2267.65625,
1564
+ "epoch": 0.1,
1565
+ "grad_norm": 0.6535834008944279,
1566
+ "kl": 1.0345458984375,
1567
+ "learning_rate": 5e-07,
1568
+ "loss": 0.052,
1569
+ "reward": 0.2982421967899427,
1570
+ "reward_std": 0.3505426752381027,
1571
+ "rewards/end_of_conversation_reward_func": 0.05703125079162419,
1572
+ "rewards/end_rm_reward_func": 0.2607421875,
1573
+ "rewards/length_reward_func": -0.01953125,
1574
+ "rewards/thinking_reward_func": 0.0,
1575
+ "step": 125
1576
+ },
1577
+ {
1578
+ "clip_ratio": 0.005725323280785233,
1579
+ "epoch": 0.1008,
1580
+ "grad_norm": 0.6302935877001168,
1581
+ "kl": 1.271240234375,
1582
+ "learning_rate": 5e-07,
1583
+ "loss": 0.0516,
1584
+ "step": 126
1585
+ },
1586
+ {
1587
+ "clip_ratio": 0.0,
1588
+ "completion_length": 2597.3203125,
1589
+ "epoch": 0.1016,
1590
+ "grad_norm": 0.6427620110094884,
1591
+ "kl": 2.03521728515625,
1592
+ "learning_rate": 5e-07,
1593
+ "loss": 0.0256,
1594
+ "reward": 0.3076172007713467,
1595
+ "reward_std": 0.35239528538659215,
1596
+ "rewards/end_of_conversation_reward_func": 0.05859375052386895,
1597
+ "rewards/end_rm_reward_func": 0.2724609375,
1598
+ "rewards/length_reward_func": -0.0234375,
1599
+ "rewards/thinking_reward_func": 0.0,
1600
+ "step": 127
1601
+ },
1602
+ {
1603
+ "clip_ratio": 0.006149623615783639,
1604
+ "epoch": 0.1024,
1605
+ "grad_norm": 0.6579464818780976,
1606
+ "kl": 2.0386962890625,
1607
+ "learning_rate": 5e-07,
1608
+ "loss": 0.0253,
1609
+ "step": 128
1610
+ },
1611
+ {
1612
+ "clip_ratio": 0.0,
1613
+ "completion_length": 2802.3125,
1614
+ "epoch": 0.1032,
1615
+ "grad_norm": 0.8734444908028882,
1616
+ "kl": 17.40386962890625,
1617
+ "learning_rate": 5e-07,
1618
+ "loss": 0.1071,
1619
+ "reward": 0.33613283321028575,
1620
+ "reward_std": 0.38626000890508294,
1621
+ "rewards/end_of_conversation_reward_func": 0.06953125214204192,
1622
+ "rewards/end_rm_reward_func": 0.2978515625,
1623
+ "rewards/length_reward_func": -0.03125,
1624
+ "rewards/thinking_reward_func": 0.0,
1625
+ "step": 129
1626
+ },
1627
+ {
1628
+ "clip_ratio": 0.00546567996207159,
1629
+ "epoch": 0.104,
1630
+ "grad_norm": 0.7033969362455426,
1631
+ "kl": 12.68121337890625,
1632
+ "learning_rate": 5e-07,
1633
+ "loss": 0.1066,
1634
+ "step": 130
1635
+ },
1636
+ {
1637
+ "clip_ratio": 0.0,
1638
+ "completion_length": 3074.7109375,
1639
+ "epoch": 0.1048,
1640
+ "grad_norm": 1.9983054128585318,
1641
+ "kl": 80.3271484375,
1642
+ "learning_rate": 5e-07,
1643
+ "loss": 0.0574,
1644
+ "reward": 0.2843750170432031,
1645
+ "reward_std": 0.5465462752617896,
1646
+ "rewards/end_of_conversation_reward_func": 0.061718751094304025,
1647
+ "rewards/end_rm_reward_func": 0.28125,
1648
+ "rewards/length_reward_func": -0.05859375,
1649
+ "rewards/thinking_reward_func": 0.0,
1650
+ "step": 131
1651
+ },
1652
+ {
1653
+ "clip_ratio": 0.005686903212335892,
1654
+ "epoch": 0.1056,
1655
+ "grad_norm": 0.7124750782840086,
1656
+ "kl": 70.491943359375,
1657
+ "learning_rate": 5e-07,
1658
+ "loss": 0.056,
1659
+ "step": 132
1660
+ },
1661
+ {
1662
+ "clip_ratio": 0.0,
1663
+ "completion_length": 2400.2265625,
1664
+ "epoch": 0.1064,
1665
+ "grad_norm": 0.9314176839191374,
1666
+ "kl": 4.3787841796875,
1667
+ "learning_rate": 5e-07,
1668
+ "loss": -0.0058,
1669
+ "reward": 0.3619140745140612,
1670
+ "reward_std": 0.41163346637040377,
1671
+ "rewards/end_of_conversation_reward_func": 0.06015625118743628,
1672
+ "rewards/end_rm_reward_func": 0.3603515625,
1673
+ "rewards/length_reward_func": -0.05859375,
1674
+ "rewards/thinking_reward_func": 0.0,
1675
+ "step": 133
1676
+ },
1677
+ {
1678
+ "clip_ratio": 0.006425623796530999,
1679
+ "epoch": 0.1072,
1680
+ "grad_norm": 0.6428707587124971,
1681
+ "kl": 5.10992431640625,
1682
+ "learning_rate": 5e-07,
1683
+ "loss": -0.0064,
1684
+ "step": 134
1685
+ },
1686
+ {
1687
+ "clip_ratio": 0.0,
1688
+ "completion_length": 2813.4140625,
1689
+ "epoch": 0.108,
1690
+ "grad_norm": 1.2731691909842648,
1691
+ "kl": 7265.392883300781,
1692
+ "learning_rate": 5e-07,
1693
+ "loss": 0.0596,
1694
+ "reward": 0.2429687607800588,
1695
+ "reward_std": 0.37734482274390757,
1696
+ "rewards/end_of_conversation_reward_func": 0.06328125105937943,
1697
+ "rewards/end_rm_reward_func": 0.22265625,
1698
+ "rewards/length_reward_func": -0.04296875,
1699
+ "rewards/thinking_reward_func": 0.0,
1700
+ "step": 135
1701
+ },
1702
+ {
1703
+ "clip_ratio": 0.006233511230675504,
1704
+ "epoch": 0.1088,
1705
+ "grad_norm": 0.7280723173732075,
1706
+ "kl": 596.9638061523438,
1707
+ "learning_rate": 5e-07,
1708
+ "loss": 0.0587,
1709
+ "step": 136
1710
+ },
1711
+ {
1712
+ "clip_ratio": 0.0,
1713
+ "completion_length": 2861.9296875,
1714
+ "epoch": 0.1096,
1715
+ "grad_norm": 0.5765466847825812,
1716
+ "kl": 1.0167236328125,
1717
+ "learning_rate": 5e-07,
1718
+ "loss": 0.0295,
1719
+ "reward": 0.2761718863621354,
1720
+ "reward_std": 0.40949083073064685,
1721
+ "rewards/end_of_conversation_reward_func": 0.05937500135041773,
1722
+ "rewards/end_rm_reward_func": 0.255859375,
1723
+ "rewards/length_reward_func": -0.0390625,
1724
+ "rewards/thinking_reward_func": 0.0,
1725
+ "step": 137
1726
+ },
1727
+ {
1728
+ "clip_ratio": 0.004913579861749895,
1729
+ "epoch": 0.1104,
1730
+ "grad_norm": 0.561800571593937,
1731
+ "kl": 0.811767578125,
1732
+ "learning_rate": 5e-07,
1733
+ "loss": 0.0293,
1734
+ "step": 138
1735
+ },
1736
+ {
1737
+ "clip_ratio": 0.0,
1738
+ "completion_length": 2359.171875,
1739
+ "epoch": 0.1112,
1740
+ "grad_norm": 10.321113205088718,
1741
+ "kl": 6.01751708984375,
1742
+ "learning_rate": 5e-07,
1743
+ "loss": 0.0651,
1744
+ "reward": 0.24648438091389835,
1745
+ "reward_std": 0.3026078275870532,
1746
+ "rewards/end_of_conversation_reward_func": 0.06875000149011612,
1747
+ "rewards/end_rm_reward_func": 0.193359375,
1748
+ "rewards/length_reward_func": -0.015625,
1749
+ "rewards/thinking_reward_func": 0.0,
1750
+ "step": 139
1751
+ },
1752
+ {
1753
+ "clip_ratio": 0.006259943009354174,
1754
+ "epoch": 0.112,
1755
+ "grad_norm": 1.450404363065613,
1756
+ "kl": 1.487548828125,
1757
+ "learning_rate": 5e-07,
1758
+ "loss": 0.0588,
1759
+ "step": 140
1760
+ },
1761
+ {
1762
+ "clip_ratio": 0.0,
1763
+ "completion_length": 2657.4375,
1764
+ "epoch": 0.1128,
1765
+ "grad_norm": 1.6913748735699703,
1766
+ "kl": 1.611328125,
1767
+ "learning_rate": 5e-07,
1768
+ "loss": 0.0549,
1769
+ "reward": 0.4406250237952918,
1770
+ "reward_std": 0.38095375150442123,
1771
+ "rewards/end_of_conversation_reward_func": 0.061718751734588295,
1772
+ "rewards/end_rm_reward_func": 0.41796875,
1773
+ "rewards/length_reward_func": -0.0390625,
1774
+ "rewards/thinking_reward_func": 0.0,
1775
+ "step": 141
1776
+ },
1777
+ {
1778
+ "clip_ratio": 0.005613551795249805,
1779
+ "epoch": 0.1136,
1780
+ "grad_norm": 0.7958482694330619,
1781
+ "kl": 1.34564208984375,
1782
+ "learning_rate": 5e-07,
1783
+ "loss": 0.054,
1784
+ "step": 142
1785
+ },
1786
+ {
1787
+ "clip_ratio": 0.0,
1788
+ "completion_length": 2331.3984375,
1789
+ "epoch": 0.1144,
1790
+ "grad_norm": 0.6690401528004118,
1791
+ "kl": 0.93682861328125,
1792
+ "learning_rate": 5e-07,
1793
+ "loss": 0.0346,
1794
+ "reward": 0.3912109505617991,
1795
+ "reward_std": 0.4049599929712713,
1796
+ "rewards/end_of_conversation_reward_func": 0.06406250066356733,
1797
+ "rewards/end_rm_reward_func": 0.3466796875,
1798
+ "rewards/length_reward_func": -0.01953125,
1799
+ "rewards/thinking_reward_func": 0.0,
1800
+ "step": 143
1801
+ },
1802
+ {
1803
+ "clip_ratio": 0.0052296058856882155,
1804
+ "epoch": 0.1152,
1805
+ "grad_norm": 0.6545569167278118,
1806
+ "kl": 0.91241455078125,
1807
+ "learning_rate": 5e-07,
1808
+ "loss": 0.0342,
1809
+ "step": 144
1810
+ },
1811
+ {
1812
+ "clip_ratio": 0.0,
1813
+ "completion_length": 2549.3515625,
1814
+ "epoch": 0.116,
1815
+ "grad_norm": 0.5890775780320036,
1816
+ "kl": 26.97711181640625,
1817
+ "learning_rate": 5e-07,
1818
+ "loss": 0.0389,
1819
+ "reward": 0.23417969699949026,
1820
+ "reward_std": 0.3516567766200751,
1821
+ "rewards/end_of_conversation_reward_func": 0.06718750100117177,
1822
+ "rewards/end_rm_reward_func": 0.1748046875,
1823
+ "rewards/length_reward_func": -0.0078125,
1824
+ "rewards/thinking_reward_func": 0.0,
1825
+ "step": 145
1826
+ },
1827
+ {
1828
+ "clip_ratio": 0.005101009825011715,
1829
+ "epoch": 0.1168,
1830
+ "grad_norm": 0.5467437980921307,
1831
+ "kl": 70.5947265625,
1832
+ "learning_rate": 5e-07,
1833
+ "loss": 0.0386,
1834
+ "step": 146
1835
+ },
1836
+ {
1837
+ "clip_ratio": 0.0,
1838
+ "completion_length": 2663.859375,
1839
+ "epoch": 0.1176,
1840
+ "grad_norm": 0.6762584056701121,
1841
+ "kl": 47.773193359375,
1842
+ "learning_rate": 5e-07,
1843
+ "loss": 0.0684,
1844
+ "reward": 0.4140625186264515,
1845
+ "reward_std": 0.5097206123173237,
1846
+ "rewards/end_of_conversation_reward_func": 0.06640625069849193,
1847
+ "rewards/end_rm_reward_func": 0.3828125,
1848
+ "rewards/length_reward_func": -0.03515625,
1849
+ "rewards/thinking_reward_func": 0.0,
1850
+ "step": 147
1851
+ },
1852
+ {
1853
+ "clip_ratio": 0.005189290648559108,
1854
+ "epoch": 0.1184,
1855
+ "grad_norm": 0.623836517060842,
1856
+ "kl": 270.5855712890625,
1857
+ "learning_rate": 5e-07,
1858
+ "loss": 0.0679,
1859
+ "step": 148
1860
+ },
1861
+ {
1862
+ "clip_ratio": 0.0,
1863
+ "completion_length": 2959.1171875,
1864
+ "epoch": 0.1192,
1865
+ "grad_norm": 0.6671454736198891,
1866
+ "kl": 0.91912841796875,
1867
+ "learning_rate": 5e-07,
1868
+ "loss": 0.0542,
1869
+ "reward": 0.34667970472946763,
1870
+ "reward_std": 0.3730495397467166,
1871
+ "rewards/end_of_conversation_reward_func": 0.06250000081490725,
1872
+ "rewards/end_rm_reward_func": 0.3193359375,
1873
+ "rewards/length_reward_func": -0.03515625,
1874
+ "rewards/thinking_reward_func": 0.0,
1875
+ "step": 149
1876
+ },
1877
+ {
1878
+ "clip_ratio": 0.005951303654001094,
1879
+ "epoch": 0.12,
1880
+ "grad_norm": 0.6116887062182381,
1881
+ "kl": 0.791259765625,
1882
+ "learning_rate": 5e-07,
1883
+ "loss": 0.0538,
1884
+ "step": 150
1885
+ },
1886
+ {
1887
+ "clip_ratio": 0.0,
1888
+ "completion_length": 3094.140625,
1889
+ "epoch": 0.1208,
1890
+ "grad_norm": 4.667119011332929,
1891
+ "kl": 2.3486328125,
1892
+ "learning_rate": 5e-07,
1893
+ "loss": 0.0428,
1894
+ "reward": 0.27773438883014023,
1895
+ "reward_std": 0.47337998705916107,
1896
+ "rewards/end_of_conversation_reward_func": 0.06093750102445483,
1897
+ "rewards/end_rm_reward_func": 0.240234375,
1898
+ "rewards/length_reward_func": -0.0234375,
1899
+ "rewards/thinking_reward_func": 0.0,
1900
+ "step": 151
1901
+ },
1902
+ {
1903
+ "clip_ratio": 0.0058815906959353015,
1904
+ "epoch": 0.1216,
1905
+ "grad_norm": 179.58027001282468,
1906
+ "kl": 15.09307861328125,
1907
+ "learning_rate": 5e-07,
1908
+ "loss": 0.0682,
1909
+ "step": 152
1910
+ },
1911
+ {
1912
+ "clip_ratio": 0.0,
1913
+ "completion_length": 3117.2890625,
1914
+ "epoch": 0.1224,
1915
+ "grad_norm": 0.7534678082177136,
1916
+ "kl": 12.952392578125,
1917
+ "learning_rate": 5e-07,
1918
+ "loss": 0.0408,
1919
+ "reward": 0.22148438543081284,
1920
+ "reward_std": 0.42119756643660367,
1921
+ "rewards/end_of_conversation_reward_func": 0.059375000884756446,
1922
+ "rewards/end_rm_reward_func": 0.220703125,
1923
+ "rewards/length_reward_func": -0.05859375,
1924
+ "rewards/thinking_reward_func": 0.0,
1925
+ "step": 153
1926
+ },
1927
+ {
1928
+ "clip_ratio": 0.004391293317894451,
1929
+ "epoch": 0.1232,
1930
+ "grad_norm": 0.5828739595215712,
1931
+ "kl": 8.2723388671875,
1932
+ "learning_rate": 5e-07,
1933
+ "loss": 0.0403,
1934
+ "step": 154
1935
+ },
1936
+ {
1937
+ "clip_ratio": 0.0,
1938
+ "completion_length": 2844.5234375,
1939
+ "epoch": 0.124,
1940
+ "grad_norm": 0.716894901784797,
1941
+ "kl": 7.204345703125,
1942
+ "learning_rate": 5e-07,
1943
+ "loss": 0.0173,
1944
+ "reward": 0.35722657898440957,
1945
+ "reward_std": 0.3928870742674917,
1946
+ "rewards/end_of_conversation_reward_func": 0.07500000135041773,
1947
+ "rewards/end_rm_reward_func": 0.3369140625,
1948
+ "rewards/length_reward_func": -0.0546875,
1949
+ "rewards/thinking_reward_func": 0.0,
1950
+ "step": 155
1951
+ },
1952
+ {
1953
+ "clip_ratio": 0.004953728028340265,
1954
+ "epoch": 0.1248,
1955
+ "grad_norm": 0.7207403983692948,
1956
+ "kl": 2.5550537109375,
1957
+ "learning_rate": 5e-07,
1958
+ "loss": 0.0171,
1959
+ "step": 156
1960
+ },
1961
+ {
1962
+ "clip_ratio": 0.0,
1963
+ "completion_length": 2347.9765625,
1964
+ "epoch": 0.1256,
1965
+ "grad_norm": 0.8185732891233355,
1966
+ "kl": 1.7054443359375,
1967
+ "learning_rate": 5e-07,
1968
+ "loss": 0.0532,
1969
+ "reward": 0.2826172022614628,
1970
+ "reward_std": 0.4683522223494947,
1971
+ "rewards/end_of_conversation_reward_func": 0.06484375114087015,
1972
+ "rewards/end_rm_reward_func": 0.2529296875,
1973
+ "rewards/length_reward_func": -0.03515625,
1974
+ "rewards/thinking_reward_func": 0.0,
1975
+ "step": 157
1976
+ },
1977
+ {
1978
+ "clip_ratio": 0.006606276831007563,
1979
+ "epoch": 0.1264,
1980
+ "grad_norm": 0.728399034605529,
1981
+ "kl": 1.5609130859375,
1982
+ "learning_rate": 5e-07,
1983
+ "loss": 0.0526,
1984
+ "step": 158
1985
+ },
1986
+ {
1987
+ "clip_ratio": 0.0,
1988
+ "completion_length": 2569.265625,
1989
+ "epoch": 0.1272,
1990
+ "grad_norm": 0.7190757659849589,
1991
+ "kl": 0.906005859375,
1992
+ "learning_rate": 5e-07,
1993
+ "loss": -0.0206,
1994
+ "reward": 0.2970703258179128,
1995
+ "reward_std": 0.3366057106759399,
1996
+ "rewards/end_of_conversation_reward_func": 0.06171875074505806,
1997
+ "rewards/end_rm_reward_func": 0.2626953125,
1998
+ "rewards/length_reward_func": -0.02734375,
1999
+ "rewards/thinking_reward_func": 0.0,
2000
+ "step": 159
2001
+ },
2002
+ {
2003
+ "clip_ratio": 0.005102125694975257,
2004
+ "epoch": 0.128,
2005
+ "grad_norm": 0.6672444048962334,
2006
+ "kl": 0.8017578125,
2007
+ "learning_rate": 5e-07,
2008
+ "loss": -0.021,
2009
+ "step": 160
2010
+ },
2011
+ {
2012
+ "clip_ratio": 0.0,
2013
+ "completion_length": 2620.1484375,
2014
+ "epoch": 0.1288,
2015
+ "grad_norm": 0.7595254995251381,
2016
+ "kl": 1.82080078125,
2017
+ "learning_rate": 5e-07,
2018
+ "loss": 0.0537,
2019
+ "reward": 0.3201171928085387,
2020
+ "reward_std": 0.4111205171793699,
2021
+ "rewards/end_of_conversation_reward_func": 0.07109375111758709,
2022
+ "rewards/end_rm_reward_func": 0.2724609375,
2023
+ "rewards/length_reward_func": -0.0234375,
2024
+ "rewards/thinking_reward_func": 0.0,
2025
+ "step": 161
2026
+ },
2027
+ {
2028
+ "clip_ratio": 0.004954093805281445,
2029
+ "epoch": 0.1296,
2030
+ "grad_norm": 0.743108178535059,
2031
+ "kl": 2.1588134765625,
2032
+ "learning_rate": 5e-07,
2033
+ "loss": 0.0532,
2034
+ "step": 162
2035
+ },
2036
+ {
2037
+ "clip_ratio": 0.0,
2038
+ "completion_length": 2186.5078125,
2039
+ "epoch": 0.1304,
2040
+ "grad_norm": 1.324960021503415,
2041
+ "kl": 3.0037841796875,
2042
+ "learning_rate": 5e-07,
2043
+ "loss": 0.0527,
2044
+ "reward": 0.3619140777736902,
2045
+ "reward_std": 0.38691631401889026,
2046
+ "rewards/end_of_conversation_reward_func": 0.06015625048894435,
2047
+ "rewards/end_rm_reward_func": 0.3056640625,
2048
+ "rewards/length_reward_func": -0.00390625,
2049
+ "rewards/thinking_reward_func": 0.0,
2050
+ "step": 163
2051
+ },
2052
+ {
2053
+ "clip_ratio": 0.005645596262183972,
2054
+ "epoch": 0.1312,
2055
+ "grad_norm": 1.0819168226765692,
2056
+ "kl": 10.2042236328125,
2057
+ "learning_rate": 5e-07,
2058
+ "loss": 0.052,
2059
+ "step": 164
2060
+ },
2061
+ {
2062
+ "clip_ratio": 0.0,
2063
+ "completion_length": 2619.4140625,
2064
+ "epoch": 0.132,
2065
+ "grad_norm": 0.7079010578463608,
2066
+ "kl": 1.164794921875,
2067
+ "learning_rate": 5e-07,
2068
+ "loss": 0.0719,
2069
+ "reward": 0.3517578286700882,
2070
+ "reward_std": 0.444250165252015,
2071
+ "rewards/end_of_conversation_reward_func": 0.0695312509778887,
2072
+ "rewards/end_rm_reward_func": 0.3251953125,
2073
+ "rewards/length_reward_func": -0.04296875,
2074
+ "rewards/thinking_reward_func": 0.0,
2075
+ "step": 165
2076
+ },
2077
+ {
2078
+ "clip_ratio": 0.004916784484521486,
2079
+ "epoch": 0.1328,
2080
+ "grad_norm": 0.667503324712686,
2081
+ "kl": 1.4266357421875,
2082
+ "learning_rate": 5e-07,
2083
+ "loss": 0.0714,
2084
+ "step": 166
2085
+ },
2086
+ {
2087
+ "clip_ratio": 0.0,
2088
+ "completion_length": 2411.8671875,
2089
+ "epoch": 0.1336,
2090
+ "grad_norm": 2.7317288434410036,
2091
+ "kl": 2.0714111328125,
2092
+ "learning_rate": 5e-07,
2093
+ "loss": 0.1114,
2094
+ "reward": 0.21445313666481525,
2095
+ "reward_std": 0.3326614680700004,
2096
+ "rewards/end_of_conversation_reward_func": 0.06796875107102096,
2097
+ "rewards/end_rm_reward_func": 0.166015625,
2098
+ "rewards/length_reward_func": -0.01953125,
2099
+ "rewards/thinking_reward_func": 0.0,
2100
+ "step": 167
2101
+ },
2102
+ {
2103
+ "clip_ratio": 0.0053935582836857066,
2104
+ "epoch": 0.1344,
2105
+ "grad_norm": 1.3387444314477779,
2106
+ "kl": 1.496337890625,
2107
+ "learning_rate": 5e-07,
2108
+ "loss": 0.1094,
2109
+ "step": 168
2110
+ },
2111
+ {
2112
+ "clip_ratio": 0.0,
2113
+ "completion_length": 2000.3359375,
2114
+ "epoch": 0.1352,
2115
+ "grad_norm": 159.24137003595405,
2116
+ "kl": 56.654296875,
2117
+ "learning_rate": 5e-07,
2118
+ "loss": 0.1291,
2119
+ "reward": 0.42187501955777407,
2120
+ "reward_std": 0.47698789834976196,
2121
+ "rewards/end_of_conversation_reward_func": 0.0664062510477379,
2122
+ "rewards/end_rm_reward_func": 0.359375,
2123
+ "rewards/length_reward_func": -0.00390625,
2124
+ "rewards/thinking_reward_func": 0.0,
2125
+ "step": 169
2126
+ },
2127
+ {
2128
+ "clip_ratio": 0.006557086948305368,
2129
+ "epoch": 0.136,
2130
+ "grad_norm": 6.8095683630193635,
2131
+ "kl": 18.90185546875,
2132
+ "learning_rate": 5e-07,
2133
+ "loss": 0.0603,
2134
+ "step": 170
2135
+ }
2136
+ ],
2137
+ "logging_steps": 1,
2138
+ "max_steps": 1250,
2139
+ "num_input_tokens_seen": 0,
2140
+ "num_train_epochs": 1,
2141
+ "save_steps": 10,
2142
+ "stateful_callbacks": {
2143
+ "TrainerControl": {
2144
+ "args": {
2145
+ "should_epoch_stop": false,
2146
+ "should_evaluate": false,
2147
+ "should_log": false,
2148
+ "should_save": true,
2149
+ "should_training_stop": false
2150
+ },
2151
+ "attributes": {}
2152
+ }
2153
+ },
2154
+ "total_flos": 0.0,
2155
+ "train_batch_size": 32,
2156
+ "trial_name": null,
2157
+ "trial_params": null
2158
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3503309e215459351eb16b54b9cbb4e8e33052d09e649b025b01092f76aea42
3
+ size 7800
vocab.json ADDED
The diff for this file is too large to render. See raw diff