File size: 17,095 Bytes
c8dc454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
---
base_model: klue/roberta-base
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7654
- loss:CosineSimilarityLoss
widget:
- source_sentence: 밥을 먹고 나서 운동하시겠어요, 먹기 전에 하시겠어요?
  sentences:
  - 제습기 조정하는 방법을 알려줘
  - 금요일에 놀러 가고 싶은지 토요일에 가고 싶은지 말해보겠니?
  - 이번에 임원들도 오시니 거래처 사람들과 만날  늦지 마세요.
- source_sentence: 올해 지원 대상에 선정된 42개사는 사업화 자금부터 사업화 촉진 진단, 민간투자 유치  기업 규모를 키울  있는
    각종 지원을 최대 15개월까지 받을  있다.
  sentences:
  - 체크인 아웃   소통이나 협조도도 매우 좋습니다
  - 작년 용평 지역 강설량은?
  - 긴급 사태가 선언된 7 도부현의 지사는 법적인 근거 아래 외출자제와 휴교 등을 요청할  있다.
- source_sentence: 언제 할머니 칠순 잔치가 잡혀 있나요, 이번달입니까 다음달입니까?
  sentences:
  - 그리고 세탁세제와 식용유가 없으니 준비 하세요
  - 삼월에 태어난 친구 이름이 어떻게 됩니까?
  -   때는 다른 신발 말고 장화를 신었으면 합니다.
- source_sentence: 한메일 서비스를 사용할  있는 기한이 언제일까요?
  sentences:
  - 우리는 코로나19와의 투쟁에서 개발도상국들을 지원해야  필요성을 인정한다.
  -   때는 높은지대에 텐트 치도록 해. 낮은 지대는 별로야.
  - 한메일은 언제 서비스를 종료해?
- source_sentence: 오늘 제가 해야할 일이 무엇인가요!
  sentences:
  - 시내 중심에 위치한 깔끔하고 머무르기 좋은 숙소 입니다.
  - 가게로 들어가는  바로 옆에 오른쪽으로 올라가는 입구가 있어요.
  - 언제쯤 친구가 여행   있겠니?
model-index:
- name: SentenceTransformer based on klue/roberta-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: 0.3477070578392738
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.35560473197486514
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.36738467673522557
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.36460670798564826
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.36074511612166327
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.35482778401649034
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.21251170218646828
      name: Pearson Dot
    - type: spearman_dot
      value: 0.20063256899469895
      name: Spearman Dot
    - type: pearson_max
      value: 0.36738467673522557
      name: Pearson Max
    - type: spearman_max
      value: 0.36460670798564826
      name: Spearman Max
    - type: pearson_cosine
      value: 0.9611295434382598
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.922281644313147
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.95182850390749
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.9211213430736883
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9519510086799272
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.9217056450919558
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.9503136478175895
      name: Pearson Dot
    - type: spearman_dot
      value: 0.9045157489205089
      name: Spearman Dot
    - type: pearson_max
      value: 0.9611295434382598
      name: Pearson Max
    - type: spearman_max
      value: 0.922281644313147
      name: Spearman Max
---

# SentenceTransformer based on klue/roberta-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '오늘 제가 해야할 일이 무엇인가요!',
    '언제쯤 친구가 여행 갈 수 있겠니?',
    '시내 중심에 위치한 깔끔하고 머무르기 좋은 숙소 입니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.3477     |
| spearman_cosine    | 0.3556     |
| pearson_manhattan  | 0.3674     |
| spearman_manhattan | 0.3646     |
| pearson_euclidean  | 0.3607     |
| spearman_euclidean | 0.3548     |
| pearson_dot        | 0.2125     |
| spearman_dot       | 0.2006     |
| pearson_max        | 0.3674     |
| **spearman_max**   | **0.3646** |

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.9611     |
| spearman_cosine    | 0.9223     |
| pearson_manhattan  | 0.9518     |
| spearman_manhattan | 0.9211     |
| pearson_euclidean  | 0.952      |
| spearman_euclidean | 0.9217     |
| pearson_dot        | 0.9503     |
| spearman_dot       | 0.9045     |
| pearson_max        | 0.9611     |
| **spearman_max**   | **0.9223** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 7,654 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                        | label                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 7 tokens</li><li>mean: 19.59 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.37 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                                                                                        | sentence_1                                                                                    | label             |
  |:--------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:------------------|
  | <code>‘인공지능 반도체 산업 발전전략’의 차질 없는 이행 및 성과점검을 위해 정부와 산·학·연이 참여하는 ‘인공지능 반도체 산업 전략회의’를 구성·운영한다.</code> | <code>정부, 산업계, 학계, 연구기관이 참여하는 '인공지능 반도체산업전략회의'를 구성하여 '인공지능 반도체산업 발전전략'의 성과를 점검할 예정입니다.</code> | <code>0.6</code>  |
  | <code>예상했던대로 가성비 대비  최고의 위치였어요.</code>                                                            | <code>처음에 예상했던것보다 위치가 훨씬 좋았어요</code>                                                          | <code>0.54</code> |
  | <code>올해 처음 개최되는 투자유치설명회는 전문투자기관에 홍보할 기회를 얻기 힘든 1인 미디어 스타트업들의 민간 투자유치를 지원할 목적으로 마련됐다.</code>      | <code>이번 발사는 저궤도위성에 이어 정지궤도위성에서 실시간으로 환경 감시 업무를 수행하는 세계 최초의 위성으로 기록됐다.</code>                 | <code>0.04</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss | spearman_max |
|:------:|:----:|:-------------:|:------------:|
| 0      | 0    | -             | 0.3646       |
| 1.0    | 479  | -             | 0.9133       |
| 1.0438 | 500  | 0.0281        | -            |
| 2.0    | 958  | -             | 0.9181       |
| 2.0877 | 1000 | 0.006         | 0.9217       |
| 3.0    | 1437 | -             | 0.9191       |
| 3.1315 | 1500 | 0.0036        | -            |
| 4.0    | 1916 | -             | 0.9223       |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->