reaperdoesntknow commited on
Commit
253a7bf
·
verified ·
1 Parent(s): a0bd704

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -1
README.md CHANGED
@@ -16,4 +16,73 @@ tags:
16
  - ai
17
  - llm
18
  - text
19
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  - ai
17
  - llm
18
  - text
19
+ ---
20
+ # SymbioticLM-1B
21
+
22
+ **Author**: Roy S. Colca Jr.
23
+ **Model Type**: Hybrid Symbolic–Transformer
24
+ **Base Model**: Qwen-1B
25
+ **License**: MIT
26
+ **Framework**: PyTorch + HuggingFace Transformers
27
+ **Purpose**: Lightweight, memory-augmented reasoning model for CPU and embedded inference
28
+
29
+ ---
30
+
31
+ ## Overview
32
+
33
+ SymbioticLM-1B is the compact version of the SymbioticAI architecture. It fuses Qwen’s rotary transformer design with a symbolic processing pipeline and a persistent episodic memory. Though smaller in parameter count, it retains the full cognitive engine: symbolic memory, dynamic thought evolution, and entropy-gated control.
34
+
35
+ This model is ideal for symbolic reasoning in constrained environments — like research agents, lightweight assistants, and memory-efficient logical processing.
36
+
37
+ ---
38
+
39
+ ## Architecture Highlights
40
+
41
+ - **Backbone**: Qwen-1B rotary transformer
42
+ - **Symbolic Dim**: 1024
43
+ - **Symbolic Modules**:
44
+ - ThoughtDynamicsLNN
45
+ - CrystallineProcessor (DNAConv GNN)
46
+ - LiquidThoughtProcessor
47
+ - HelicalDNAProcessor
48
+ - **Memory**: 2048 symbolic vectors with entropic and contextual retrieval
49
+ - **Dream Mode**: Symbolic simulation with ThoughtGenerator
50
+
51
+ ---
52
+
53
+ ## Files Included
54
+
55
+ | File | Description |
56
+ |--------------------------|-------------------------------------------------------|
57
+ | `model.bin` | PyTorch model weights |
58
+ | `model.safetensors` | SafeTensor weights |
59
+ | `memory.pt` | Serialized symbolic memory vectors |
60
+ | `config.json` | Model architecture config |
61
+ | `generation_config.json` | Generation strategy configuration |
62
+ | `tokenizer.json` | Tokenizer including custom symbolic tags |
63
+ | `added_tokens.json` | Special tokens such as `<THM>`, `<LEM>`, `<D_IF>` |
64
+ | `special_tokens_map.json`| Tokenizer-to-logic mappings |
65
+
66
+ ---
67
+
68
+ ## Intended Uses
69
+
70
+ - CPU-optimized symbolic inference
71
+ - Educational agents with memory
72
+ - Graph-based explanation generation
73
+ - Procedural planning, math modeling, small-code generation
74
+
75
+ ---
76
+
77
+ ## Limitations
78
+
79
+ - Less fluent in free-form language than larger variants
80
+ - Symbolic accuracy increases with memory curation
81
+ - Dreaming requires warm-up or symbolic seeding for complex queries
82
+
83
+ ---
84
+
85
+ ## Citations
86
+
87
+
88
+ Symbolic components are rooted in cognitive modeling and discrepancy calculus research.