File size: 2,734 Bytes
bcf6055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7817766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c80ff29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: afl-3.0
datasets:
- 0xZee/dataset-CoT-Advanced-Calculus-268
language:
- en
base_model:
- Qwen/Qwen3-8B
pipeline_tag: text-generation
library_name: transformers
tags:
- qwen3
- 8b
- qwen3-8b
- symbiotic
- symbtioicai
---

# SymbioticLM-8B 
**Model Type**: Hybrid Symbolic–Transformer  
**Base Model**: Qwen-8B  
**Framework**: PyTorch + Transformers-compatible  
**Purpose**: Long-memory symbolic reasoning + high-fidelity language generation

---

## Overview

SymbioticLM-8B is a state-of-the-art hybrid transformer model with built-in symbolic cognition. It combines an 8B Qwen-based transformer with modular symbolic processors and a persistent memory buffer. The model supports both general conversation and deep symbolic tasks such as theorem generation, logical chaining, and structured reasoning with retained memory across turns.

---

## Architecture Highlights

- **Backbone**: Qwen-8B rotary transformer
- **Symbolic Dim**: 4096
- **Symbolic Modules**:
  - ThoughtDynamicsLNN (multi-head LSTM attention)
  - CrystallineProcessor (DNAConv GNN)
  - LiquidThoughtProcessor (recurrent symbol folding)
  - HelicalDNAProcessor (helical linear projection)
- **Memory**: 2048 symbolic vectors (float32) with entropy-aware retrieval and contextual recall
- **Dream Mode**: Self-generates symbolic cognition offline

---

## Files Included

| File                     | Description                                           |
|--------------------------|-------------------------------------------------------|
| `model.bin`              | PyTorch weights (LFS tracked)                         |
| `model.safetensors`      | Same weights in `safetensors` format (recommended)    |
| `memory.pt`              | Symbolic memory snapshot (entropic, pretrained)       |
| `config.json`            | Base model configuration                              |
| `generation_config.json` | Sampling and decoding config (temperature, top_p, etc.)|
| `tokenizer.json`         | Tokenizer data with custom tags and structure         |
| `added_tokens.json`      | Extra tokens like `<THM>`, `<PROOF>`, `<D_EPS>`       |
| `special_tokens_map.json`| Maps for special tokens used during generation        |

---

## Intended Uses

- General symbolic reasoning and logical conversation
- Memory-aware tutoring, research assistants
- Code + math proof modeling
- Context-persistent dialogue systems

---

## Limitations

- Not instruction-tuned (e.g., chat-style inputs may require prompt engineering)
- Larger memory buffer may increase CPU load slightly
- Symbolic inference is offline-evolved; memory must be actively seeded

---

## Citations
This model was designed and built from Discrepancy Analysis, paper to be published soon!