reaperdoesntknow commited on
Commit
46b0a79
·
verified ·
1 Parent(s): 93fd4a4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -30
README.md CHANGED
@@ -2,54 +2,164 @@
2
  library_name: transformers
3
  tags:
4
  - generated_from_trainer
 
 
 
 
 
 
 
5
  model-index:
6
  - name: SymLM
7
  results: []
 
 
 
 
 
 
 
 
8
  ---
9
 
10
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
- should probably proofread and complete it, then remove this comment. -->
 
 
 
12
 
13
- # SymLM
14
 
15
- This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
16
 
17
- ## Model description
 
18
 
19
- More information needed
 
20
 
21
- ## Intended uses & limitations
 
22
 
23
- More information needed
 
 
 
 
 
 
 
 
 
24
 
25
- ## Training and evaluation data
26
 
27
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
- ## Training procedure
30
 
31
- ### Training hyperparameters
 
32
 
33
- The following hyperparameters were used during training:
34
- - learning_rate: 5e-05
35
- - train_batch_size: 32
36
- - eval_batch_size: 8
37
- - seed: 42
38
- - gradient_accumulation_steps: 64
39
- - total_train_batch_size: 2048
40
- - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
41
- - lr_scheduler_type: cosine
42
- - lr_scheduler_warmup_steps: 100
43
- - num_epochs: 1
44
- - mixed_precision_training: Native AMP
45
 
46
- ### Training results
 
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
 
49
 
50
- ### Framework versions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- - Transformers 4.51.3
53
- - Pytorch 2.7.0+cu126
54
- - Datasets 3.5.0
55
- - Tokenizers 0.21.1
 
2
  library_name: transformers
3
  tags:
4
  - generated_from_trainer
5
+ - text-generation
6
+ - transformers
7
+ - meta-math
8
+ - qwen2
9
+ - symbolic-ai
10
+ - symbioticlm
11
+
12
  model-index:
13
  - name: SymLM
14
  results: []
15
+ license: afl-3.0
16
+ datasets:
17
+ - meta-math/MetaMathQA
18
+ language:
19
+ - en
20
+ base_model:
21
+ - Qwen/Qwen2.5-0.5B
22
+ pipeline_tag: text-generation
23
  ---
24
 
25
+ # 🧠 SymLM
26
+
27
+ **SymbioticLM** is a hybrid symbolic–neural language model that integrates a frozen transformer backbone (`Qwen2ForCausalLM`) with a suite of symbolic cognitive modules for adaptive, interpretable reasoning.
28
+
29
+ ---
30
 
31
+ ## 📐 Model Description
32
 
33
+ The architecture fuses neural token-level generation with symbolic introspection and reasoning:
34
 
35
+ - **Dynamic Thought Evolution with Helical Encoding and DNA-Inspired Memory (DTE-HDM)**
36
+ Enables structured long-term memory and spiral-context encoding across tokens.
37
 
38
+ - **Multi-Agent Symbiotic Response Mechanisms (M.A.S.R.M)**
39
+ Coordinates symbolic-neural agents via gated attention and adaptive response layers.
40
 
41
+ - **QwenExoCortex**
42
+ Projects contextual hidden states from the Qwen model into a symbolic fusion space for reasoning and memory replay.
43
 
44
+ - **Symbolic processors**
45
+ Includes:
46
+ - `ThoughtDynamicsLNN`
47
+ - `Liquid / Crystalline Processors`
48
+ - `Graph Reasoning with DNAConv`
49
+ - A rolling `ThoughtMemory`
50
+
51
+ This enables real-time fusion of symbolic thinking, token generation, and reasoning-aware language modeling.
52
+
53
+ ---
54
 
55
+ ## 🎯 Intended Uses & Limitations
56
 
57
+ ### Intended Uses
58
+
59
+ - **Mathematical reasoning and proof generation**
60
+ Fine-tuned on *MetaMathQA*, optimized for symbolic Q&A, equation logic, and structured inference.
61
+
62
+ - **Symbolic-cognitive AI research**
63
+ Useful for studying attention modulation, memory replay, and neural-symbolic interface dynamics.
64
+
65
+ - **Low-resource adaptation**
66
+ Modular memory and projection design enables meaningful performance even with smaller datasets.
67
+
68
+ - **Building adaptive cognition systems**
69
+ Can serve as a symbolic kernel for reflective AI agents and knowledge evolution pipelines.
70
+
71
+ ---
72
 
73
+ ### ⚠️ Limitations
74
 
75
+ - **Limited training scale**
76
+ Trained on 25,000 MetaMathQA examples. Effective for symbolic form, but not yet broad generalization.
77
 
78
+ - **No RLHF or alignment**
79
+ Outputs are not tuned for safety or instruction alignment and may hallucinate.
 
 
 
 
 
 
 
 
 
 
80
 
81
+ - **Fluency ≠ correctness**
82
+ Symbolic fluency does not imply mathematically valid proofs. Verification is recommended.
83
 
84
+ - **Not optimized for open-domain generation**
85
+ This model prioritizes logic and structure over conversational depth.
86
+
87
+ ---
88
+
89
+ ## ⚙️ Training Procedure
90
+
91
+ This checkpoint is currently in experimental phase.
92
+
93
+ ### 🧪 Training Hyperparameters
94
+
95
+ - **learning_rate**: `3e-5`
96
+ - **train_batch_size**: `16`
97
+ - **eval_batch_size**: `16`
98
+ - **gradient_accumulation_steps**: `64`
99
+ - **total_train_batch_size**: `1024`
100
+ - **optimizer**: `AdamW`, betas=(0.9, 0.999), epsilon=1e-08
101
+ - **lr_scheduler_type**: `cosine`
102
+ - **warmup_steps**: `500`
103
+ - **num_epochs**: `3`
104
+ - **mixed_precision_training**: `Native AMP`
105
+
106
+ ---
107
+
108
+ ## 🧱 Framework Versions
109
+
110
+ - 🤗 Transformers: `4.51.3`
111
+ - 🧠 PyTorch: `2.7.0+cu126`
112
+ - 📚 Datasets: `3.5.0`
113
+ - 🔤 Tokenizers: `0.21.1`
114
+
115
+ ---
116
 
117
+ ## 📚 Research Foundations
118
 
119
+ SymbioticLM builds upon a cohesive theoretical framework for dynamic reasoning and neuro-symbolic learning:
120
+
121
+ ### 🔁 Multi-Agent Symbiosis and Dynamic Thought
122
+
123
+ **Rapid Adaptation via Multi-Agent Symbiotic Response Mechanisms (M.A.S.R.M)**
124
+ > A framework where symbolic and neural agents dynamically adapt via gated feedback, memory modulation, and agent-based specialization.
125
+
126
+ **Focus**: Multi-agent control, reflective learning, contextual responsiveness
127
+
128
+ ---
129
+
130
+ ### 🧬 Dynamic Thought Evolution with Helical Encoding and DNA-Inspired Memory (DTE-HDM)
131
+
132
+ > A memory structure inspired by biological helices, enabling thought persistence through spiral-layered contextual encodings across time.
133
+
134
+ **Focus**: Long-term token evolution, normalized replay, thought continuity
135
+
136
+ ---
137
+
138
+ ### 🧠 Integrating DTE-HDM + M.A.S.R.M for Adaptive AI
139
+
140
+ > Combines symbolic evolution and multi-agent adaptation to construct an LLM that reflects, adapts, and deepens reasoning through internal dynamics.
141
+
142
+ **Result**: A system that *learns faster*, *adapts deeper*, and *thinks symbolically*
143
+
144
+ ---
145
+
146
+ ### 📐 Theoretical Underpinning
147
+
148
+ **The Analytic Foundations Theorem (AFT)**
149
+ > A rigorous, measure-theoretic replacement for classical calculus: replaces pointwise derivatives with discrepancy-driven integral convergence across vanishing sets.
150
+
151
+ **Applies to**:
152
+ - Symbolic gradients
153
+ - Gradient-free optimization
154
+ - Discrete logic approximation in function spaces
155
+
156
+ ---
157
+
158
+ These form the **mathematical and architectural core** of SymbioticLM, enabling:
159
+
160
+ - 🧠 *Neuro-symbolic cognitive evolution*
161
+ - 🔁 *Multi-agent dynamic feedback coordination*
162
+ - 📏 *Formal memory through discrepancy-based logic*
163
+
164
+ ---
165