SmerkyG commited on
Commit
1dd8ae0
·
verified ·
1 Parent(s): 56cdbf4

Upload modeling_rwkv6qwen2.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_rwkv6qwen2.py +1336 -0
modeling_rwkv6qwen2.py ADDED
@@ -0,0 +1,1336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch RWKV6Qwen2 model."""
21
+
22
+ import math
23
+ import inspect
24
+ from typing import List, Optional, Tuple, Union, Dict, Any
25
+
26
+ import torch
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ import torch.nn.functional as F
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.cache_utils import Cache, StaticCache, DynamicCache
33
+ from transformers.generation import GenerationMixin
34
+ from transformers.modeling_outputs import (
35
+ BaseModelOutputWithPast,
36
+ CausalLMOutputWithPast,
37
+ QuestionAnsweringModelOutput,
38
+ SequenceClassifierOutputWithPast,
39
+ TokenClassifierOutput,
40
+ )
41
+ from transformers.modeling_utils import PreTrainedModel
42
+ from transformers.utils import (
43
+ add_code_sample_docstrings,
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ is_flash_attn_2_available,
47
+ is_flash_attn_greater_or_equal_2_10,
48
+ logging,
49
+ replace_return_docstrings,
50
+ )
51
+ from .configuration_rwkv6qwen2 import RWKV6Qwen2Config
52
+
53
+ from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer, Qwen2MLP, Qwen2RMSNorm, repeat_kv
54
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
55
+
56
+ logger = logging.get_logger(__name__)
57
+
58
+
59
+ _CHECKPOINT_FOR_DOC = "RWKV/RWKV6Qwen2-7B"
60
+ _CONFIG_FOR_DOC = "RWKV6Qwen2Config"
61
+
62
+ class RWKV6State(Cache):
63
+ def __init__(self) -> None:
64
+ super().__init__()
65
+ self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
66
+ self.layer_kv_states: List[torch.Tensor] = []
67
+ self.layer_shift_states: List[torch.Tensor] = []
68
+
69
+ def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
70
+ """
71
+ Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
72
+ sequence length.
73
+ """
74
+ if layer_idx < len(self):
75
+ return (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
76
+ else:
77
+ raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
78
+
79
+ def __iter__(self):
80
+ """
81
+ Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
82
+ keys and values
83
+ """
84
+ for layer_idx in range(len(self)):
85
+ yield (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
86
+
87
+ def __len__(self):
88
+ """
89
+ Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
90
+ to the number of layers in the model.
91
+ """
92
+ return len(self.layer_kv_states)
93
+
94
+ def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
95
+ """Given the sequence length of the new inputs, returns the usable length of the cache."""
96
+ # Linear Attention variants do not have a maximum length
97
+ return new_seq_length
98
+
99
+ def reorder_cache(self, beam_idx: torch.LongTensor):
100
+ """Reorders the cache for beam search, given the selected beam indices."""
101
+ raise NotImplementedError('Cannot reorder Linear Attention state')
102
+
103
+ def get_seq_length(self, layer_idx: int = 0) -> int:
104
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
105
+ return self._seen_tokens
106
+
107
+ def get_max_cache_shape(self) -> Optional[int]:
108
+ """Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
109
+ return None
110
+
111
+ def get_max_length(self) -> Optional[int]:
112
+ """
113
+ Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length.
114
+ """
115
+ return None
116
+
117
+ # def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
118
+ # """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
119
+ # backward compatibility."""
120
+ # legacy_cache = ()
121
+ # for layer_idx in range(len(self)):
122
+ # legacy_cache += ((self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]),)
123
+ # return legacy_cache
124
+
125
+ # @classmethod
126
+ # #@deprecate_kwarg("num_hidden_layers", version="4.47.0")
127
+ # def from_legacy_cache(
128
+ # cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor, torch.FloatTensor]]] = None, num_hidden_layers: int | None = None
129
+ # ) -> "RWKV6State":
130
+ # """Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
131
+ # backward compatibility."""
132
+ # cache = cls()
133
+ # if past_key_values is not None:
134
+ # for layer_idx in range(len(past_key_values)):
135
+ # layer_kv_state, layer_shift_state = past_key_values[layer_idx]
136
+ # cache.update(layer_kv_state, layer_shift_state, layer_idx)
137
+ # return cache
138
+
139
+ def crop(self, max_length: int):
140
+ # can't implement this for linear attention variants
141
+ return
142
+
143
+ @torch.no_grad
144
+ def update(
145
+ self,
146
+ kv_state: torch.Tensor,
147
+ shift_state: torch.Tensor,
148
+ token_count: int,
149
+ layer_idx: int,
150
+ cache_kwargs: Optional[Dict[str, Any]] = None,
151
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
152
+ # Update the number of seen tokens
153
+ if layer_idx == 0:
154
+ self._seen_tokens += token_count
155
+
156
+ # Update the cache
157
+ # There may be skipped layers, fill them with empty lists
158
+ for _ in range(len(self.layer_kv_states), layer_idx + 1):
159
+ self.layer_kv_states.append(torch.zeros_like(kv_state).requires_grad_(False))
160
+ self.layer_shift_states.append(torch.zeros_like(shift_state).requires_grad_(False))
161
+ self.layer_kv_states[layer_idx].copy_(kv_state)
162
+ self.layer_shift_states[layer_idx].copy_(shift_state)
163
+
164
+ return self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]
165
+
166
+ # @deprecate_kwarg("num_hidden_layers", version="4.47.0")
167
+ # def batch_split(
168
+ # self, full_batch_size: int, split_size: int, num_hidden_layers: int = None
169
+ # ) -> List["DynamicCache"]:
170
+ # """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
171
+ # `_split_model_inputs()` in `generation.utils`"""
172
+ # out = []
173
+ # for i in range(0, full_batch_size, split_size):
174
+ # current_split = DynamicCache()
175
+ # current_split._seen_tokens = self._seen_tokens
176
+ # current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
177
+ # current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
178
+ # out.append(current_split)
179
+ # return out
180
+
181
+ # @classmethod
182
+ # @deprecate_kwarg("num_hidden_layers", version="4.47.0")
183
+ # def from_batch_splits(cls, splits: List["DynamicCache"], num_hidden_layers: int = None) -> "DynamicCache":
184
+ # """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
185
+ # `generation.utils`"""
186
+ # cache = cls()
187
+ # for idx in range(len(splits[0])):
188
+ # key_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
189
+ # value_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []]
190
+ # if key_cache != []:
191
+ # layer_keys = torch.cat(key_cache, dim=0)
192
+ # layer_values = torch.cat(value_cache, dim=0)
193
+ # cache.update(layer_keys, layer_values, idx)
194
+ # return cache
195
+
196
+ # def batch_repeat_interleave(self, repeats: int):
197
+ # """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
198
+ # for layer_idx in range(len(self)):
199
+ # self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
200
+ # self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)
201
+
202
+ # def batch_select_indices(self, indices: torch.Tensor):
203
+ # """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
204
+ # for layer_idx in range(len(self)):
205
+ # self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
206
+ # self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]
207
+
208
+ try:
209
+ #from fla.ops.gla.chunk import chunk_gla
210
+ from fla.ops.gla.fused_recurrent import fused_recurrent_gla
211
+ except ImportError:
212
+ print("Required module is not installed. Please install it using the following commands:")
213
+ print("pip install -U git+https://github.com/fla-org/flash-linear-attention")
214
+ print("Additionally, ensure you have at least version 2.2.0 of Triton installed:")
215
+ print("pip install triton>=2.2.0")
216
+
217
+ class Qwen2RotaryEmbedding(nn.Module):
218
+ def __init__(self, config: RWKV6Qwen2Config, device=None):
219
+ super().__init__()
220
+ # BC: "rope_type" was originally "type"
221
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
222
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
223
+ else:
224
+ self.rope_type = "default"
225
+ self.max_seq_len_cached = config.max_position_embeddings
226
+ self.original_max_seq_len = config.max_position_embeddings
227
+
228
+ self.config = config
229
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
230
+
231
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
232
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
233
+ self.original_inv_freq = self.inv_freq
234
+
235
+ def _dynamic_frequency_update(self, position_ids, device):
236
+ """
237
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
238
+ 1 - growing beyond the cached sequence length (allow scaling)
239
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
240
+ """
241
+ seq_len = torch.max(position_ids) + 1
242
+ if seq_len > self.max_seq_len_cached: # growth
243
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
244
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
245
+ self.max_seq_len_cached = seq_len
246
+
247
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
248
+ # This .to() is needed if the model has been moved to a device after being initialized (because
249
+ # the buffer is automatically moved, but not the original copy)
250
+ self.original_inv_freq = self.original_inv_freq.to(device)
251
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
252
+ self.max_seq_len_cached = self.original_max_seq_len
253
+
254
+ @torch.no_grad()
255
+ def forward(self, x, position_ids):
256
+ if "dynamic" in self.rope_type:
257
+ self._dynamic_frequency_update(position_ids, device=x.device)
258
+
259
+ # Core RoPE block
260
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
261
+ position_ids_expanded = position_ids[:, None, :].float()
262
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
263
+ device_type = x.device.type
264
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
265
+ with torch.autocast(device_type=device_type, enabled=False):
266
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
267
+ emb = torch.cat((freqs, freqs), dim=-1)
268
+ cos = emb.cos()
269
+ sin = emb.sin()
270
+
271
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
272
+ cos = cos * self.attention_scaling
273
+ sin = sin * self.attention_scaling
274
+
275
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
276
+
277
+ def generate_rotary_embedding(max_seqlen:int, dim:int, theta:float = 10000.0, scale:float = 1):
278
+ #inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float).to(device) / dim))
279
+
280
+ angular_velocity = theta ** -(torch.arange(0, dim, 2, dtype=torch.float) / dim) / scale # frequencies from 1.0 ... 1/theta
281
+ angles = torch.outer(torch.arange(max_seqlen), angular_velocity)
282
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
283
+ emb = torch.cat((angles, angles), dim=-1)
284
+ return torch.stack([emb.cos(), emb.sin()], dim=0)
285
+ #return torch.polar(torch.ones_like(angles), angles)
286
+
287
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
288
+ def rotate_half(x):
289
+ """Rotates half the hidden dims of the input."""
290
+ x1 = x[..., : x.shape[-1] // 2]
291
+ x2 = x[..., x.shape[-1] // 2 :]
292
+ return torch.cat((-x2, x1), dim=-1)
293
+
294
+ # # Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb
295
+ # def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim:int=1):
296
+ # B, L = q.size(0), q.size(-2)
297
+ # cos = cos[:L].unsqueeze(0).expand(B,L,-1).unsqueeze(unsqueeze_dim)
298
+ # sin = sin[:L].unsqueeze(0).expand(B,L,-1).unsqueeze(unsqueeze_dim)
299
+ # q_embed = (q * cos) + (rotate_half(q) * sin)
300
+ # k_embed = (k * cos) + (rotate_half(k) * sin)
301
+ # return q_embed, k_embed
302
+
303
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
304
+ """Applies Rotary Position Embedding to the query and key tensors.
305
+
306
+ Args:
307
+ q (`torch.Tensor`): The query tensor.
308
+ k (`torch.Tensor`): The key tensor.
309
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
310
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
311
+ position_ids (`torch.Tensor`, *optional*):
312
+ Deprecated and unused.
313
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
314
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
315
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
316
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
317
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
318
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
319
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
320
+ Returns:
321
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
322
+ """
323
+ cos = cos.unsqueeze(unsqueeze_dim)
324
+ sin = sin.unsqueeze(unsqueeze_dim)
325
+ q_embed = (q * cos) + (rotate_half(q) * sin)
326
+ k_embed = (k * cos) + (rotate_half(k) * sin)
327
+ return q_embed, k_embed
328
+
329
+ def ortho_init(x, scale):
330
+ with torch.no_grad():
331
+ shape = x.shape
332
+ if len(shape) == 2:
333
+ gain = math.sqrt(shape[0] / shape[1]) if shape[0] > shape[1] else 1
334
+ #nn.init.orthogonal_(x, gain=gain * scale)
335
+ x.copy_(nn.init.orthogonal_(torch.empty_like(x, dtype=torch.float32), gain=gain * scale))
336
+ elif len(shape) == 3:
337
+ gain = math.sqrt(shape[1] / shape[2]) if shape[1] > shape[2] else 1
338
+ for i in range(shape[0]):
339
+ #nn.init.orthogonal_(x[i], gain=gain * scale)
340
+ x[i].copy_(nn.init.orthogonal_(torch.empty_like(x[i], dtype=torch.float32), gain=gain * scale))
341
+ else:
342
+ assert False
343
+ return x
344
+
345
+ class RWKV6Attention(nn.Module):
346
+ def __init__(self, config, layer_idx: Optional[int] = None):
347
+ super().__init__()
348
+ self.config = config
349
+ self.layer_idx = layer_idx
350
+
351
+ if layer_idx is None:
352
+ logger.warning_once(
353
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
354
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
355
+ "when creating this class."
356
+ )
357
+
358
+ self.hidden_size = config.hidden_size
359
+ self.num_heads = config.num_attention_heads
360
+ self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
361
+ self.num_key_value_heads = config.num_key_value_heads
362
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
363
+ self.attention_dropout = config.attention_dropout
364
+
365
+ n_layer = self.config.num_hidden_layers
366
+ n_embd = self.hidden_size
367
+ dim_att = self.num_heads * self.head_dim
368
+ layer_id = self.layer_idx
369
+
370
+ if self.hidden_size % self.num_heads != 0:
371
+ raise ValueError(
372
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
373
+ f" and `num_heads`: {self.num_heads})."
374
+ )
375
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
376
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
377
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
378
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=getattr(config, 'attention_output_bias', config.attention_bias))
379
+
380
+ calc_lora_rank = lambda exponent, multiplier: max(1, round(self.hidden_size ** exponent * multiplier / 32)) * 32
381
+
382
+ if config.gate_rank_type == 1:
383
+ self.gate = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
384
+ elif config.gate_rank_type == 2:
385
+ lora_rank_gate = config.lora_rank_gate or calc_lora_rank(0.8, 0.6)
386
+ self.g1 = nn.Parameter(torch.empty(n_embd, lora_rank_gate))
387
+ self.g2 = nn.Parameter(torch.empty(lora_rank_gate, n_embd))
388
+
389
+ if config.groupnorm_att:
390
+ self.ln_x = nn.GroupNorm(self.num_heads, dim_att, eps=self.head_dim * 1e-5)
391
+
392
+ with torch.no_grad():
393
+ if config.gate_rank_type == 1:
394
+ self.gate.weight.zero_()
395
+ elif config.gate_rank_type == 2:
396
+ self.g1.zero_()
397
+ ortho_init(self.g2, 0.1)
398
+
399
+ ratio_0_to_1 = layer_id / (n_layer - 1) # 0 to 1
400
+ ratio_1_to_almost0 = 1.0 - (layer_id / n_layer) # 1 to ~0
401
+
402
+ if self.config.use_tokenshift:
403
+ ddd = torch.ones(1, 1, n_embd)
404
+ for i in range(n_embd):
405
+ ddd[0, 0, i] = i / n_embd
406
+
407
+ ddd = torch.zeros(1, 1, n_embd)
408
+ self.time_maa_x = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
409
+ self.time_maa_r = nn.Parameter(torch.zeros_like(ddd))
410
+ self.time_maa_k = nn.Parameter(torch.zeros_like(ddd))
411
+ self.time_maa_v = nn.Parameter(torch.zeros_like(ddd))
412
+ self.time_maa_w = nn.Parameter(torch.zeros_like(ddd))
413
+ self.time_maa_g = nn.Parameter(torch.zeros_like(ddd))
414
+
415
+ lora_rank_tokenshift = config.lora_rank_tokenshift or (32 if n_embd < 4096 else 64)
416
+
417
+ self.time_maa_w2 = nn.Parameter(torch.zeros(5, lora_rank_tokenshift, n_embd).uniform_(-0.01, 0.01))
418
+ self.time_maa_w1 = nn.Parameter(torch.zeros(n_embd, lora_rank_tokenshift*self.time_maa_w2.size(0)))
419
+
420
+ lora_rank_decay = config.lora_rank_decay or (64 if n_embd < 4096 else 128)
421
+
422
+ # RWKV-6
423
+ decay_speed = torch.ones(dim_att)
424
+ for n in range(dim_att):
425
+ decay_speed[n] = -6 + 5 * (n / (dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
426
+ self.time_decay = nn.Parameter(decay_speed.reshape(1,1,dim_att))
427
+ self.time_decay_w1 = nn.Parameter(torch.zeros(n_embd, lora_rank_decay))
428
+ self.time_decay_w2 = nn.Parameter(torch.zeros(lora_rank_decay, dim_att).uniform_(-0.01, 0.01))
429
+
430
+ def forward(
431
+ self,
432
+ hidden_states: torch.Tensor,
433
+ attention_mask: Optional[torch.Tensor] = None,
434
+ position_ids: Optional[torch.LongTensor] = None,
435
+ past_key_values: Optional[RWKV6State] = None,
436
+ output_attentions: bool = False,
437
+ use_cache: bool = False,
438
+ cache_position: Optional[torch.LongTensor] = None,
439
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
440
+ ):
441
+ output_shift_state = hidden_states[:, -1:].detach().clone()
442
+
443
+ bsz, q_len, hidden_dim = hidden_states.size()
444
+ H = self.num_heads
445
+
446
+ x = hidden_states
447
+
448
+ if use_cache and past_key_values is not None and len(past_key_values) > self.layer_idx:
449
+ input_kv_state, input_shift_state = past_key_values[self.layer_idx]
450
+ xprev = torch.cat([input_shift_state, x[:, :-1]], dim=1)
451
+ else:
452
+ input_kv_state = None
453
+ xprev = F.pad(x, (0, 0, 1, -1))
454
+
455
+ if self.config.use_tokenshift:
456
+ dxprev = xprev - x
457
+
458
+ xxx = x + dxprev * self.time_maa_x
459
+ xxx = torch.tanh(xxx @ self.time_maa_w1).view(bsz*q_len, self.time_maa_w2.size(0), -1).transpose(0, 1)
460
+ xxx = torch.bmm(xxx, self.time_maa_w2).view(self.time_maa_w2.size(0), bsz, q_len, hidden_dim)
461
+
462
+ mr, mk, mv, mw, mg = xxx.unbind(dim=0)
463
+ xr = x + dxprev * (self.time_maa_r + mr)
464
+ xk = x + dxprev * (self.time_maa_k + mk)
465
+ xv = x + dxprev * (self.time_maa_v + mv)
466
+ xw = x + dxprev * (self.time_maa_w + mw)
467
+ xg = x + dxprev * (self.time_maa_g + mg)
468
+ else:
469
+ xr = xk = xv = xw = xg = x
470
+
471
+ query_states = self.q_proj(xr)
472
+ key_states = self.k_proj(xk)
473
+ value_states = self.v_proj(xv)
474
+ decay_states = (self.time_decay + torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2).to(query_states.dtype)
475
+ if self.config.gate_rank_type == 1:
476
+ gate_states = torch.sigmoid(self.gate(xg))
477
+ elif self.config.gate_rank_type == 2:
478
+ gate_states = torch.sigmoid(xg @ self.g1) @ self.g2
479
+
480
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
481
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
482
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
483
+ decay_states = decay_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
484
+
485
+ if position_embeddings is not None:
486
+ cos, sin = position_embeddings
487
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=1)
488
+
489
+ # repeat k/v heads if n_kv_heads < n_heads
490
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
491
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
492
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
493
+
494
+ decay_states_log = -decay_states.float().exp()
495
+ decay_states_log = decay_states_log.clamp(-5) # FIXME - is this necessary?
496
+ if self.config.balance_state:
497
+ key_states = (key_states * (1 - decay_states_log.exp())).to(key_states.dtype)
498
+
499
+ # dealing with left-padding
500
+ if attention_mask is not None:
501
+ value_states = value_states * attention_mask[:, None, -value_states.shape[-2]:, None]
502
+
503
+ query_states = query_states.to(value_states.dtype)
504
+ key_states = key_states.to(value_states.dtype)
505
+
506
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
507
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
508
+ # cast them back in float16 just to be sure everything works as expected.
509
+ input_dtype = query_states.dtype
510
+ if input_dtype == torch.float32:
511
+ if torch.is_autocast_enabled():
512
+ target_dtype = torch.get_autocast_gpu_dtype()
513
+ # Handle the case where the model is quantized
514
+ elif hasattr(self.config, "_pre_quantization_dtype"):
515
+ target_dtype = self.config._pre_quantization_dtype
516
+ else:
517
+ target_dtype = self.q_proj.weight.dtype
518
+
519
+ logger.warning_once(
520
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
521
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
522
+ f" {target_dtype}."
523
+ )
524
+
525
+ query_states = query_states.to(target_dtype)
526
+ key_states = key_states.to(target_dtype)
527
+ value_states = value_states.to(target_dtype)
528
+
529
+ attn_weights = torch.empty(0, device=x.device)
530
+
531
+ scale = query_states.shape[-1] ** -0.5
532
+ output_final_state = not self.training and use_cache and past_key_values is not None
533
+ #attn_output, output_kv_state = ChunkGLAFunction.apply(query_states, key_states, value_states, decay_states_log.float(), scale, input_kv_state, output_final_state)
534
+ #attn_output, output_kv_state = chunk_gla(query_states, key_states, value_states, decay_states_log, scale, input_kv_state, output_final_state)
535
+ attn_output, output_kv_state = fused_recurrent_gla(query_states, key_states, value_states, decay_states_log, None, scale, input_kv_state, output_final_state)
536
+
537
+ if output_final_state:
538
+ past_key_values.update(output_kv_state, output_shift_state, q_len, self.layer_idx)
539
+
540
+ attn_output = attn_output.transpose(1, 2).contiguous()
541
+ attn_output = attn_output.view(bsz, q_len, -1)
542
+ if self.config.groupnorm_att:
543
+ attn_output = self.ln_x(attn_output.view(bsz * q_len, -1)).view(bsz, q_len, -1)
544
+ if self.config.gate_rank_type != 0:
545
+ attn_output = attn_output * gate_states
546
+ attn_output = self.o_proj(attn_output)
547
+
548
+ return attn_output, attn_weights
549
+
550
+ class RWKV6Qwen2DecoderLayer(Qwen2DecoderLayer):
551
+ def __init__(self, config: RWKV6Qwen2Config, layer_idx: int):
552
+ nn.Module.__init__(self)
553
+ self.hidden_size = config.hidden_size
554
+
555
+ self.self_attn = RWKV6Attention(config, layer_idx) #QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
556
+
557
+ self.mlp = Qwen2MLP(config)
558
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
559
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
560
+
561
+ def forward(
562
+ self,
563
+ hidden_states: torch.Tensor,
564
+ attention_mask: Optional[torch.Tensor] = None,
565
+ position_ids: Optional[torch.LongTensor] = None,
566
+ past_key_values: Optional[Cache] = None,
567
+ output_attentions: Optional[bool] = False,
568
+ use_cache: Optional[bool] = False,
569
+ cache_position: Optional[torch.LongTensor] = None,
570
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
571
+ **kwargs,
572
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
573
+ residual = hidden_states
574
+
575
+ hidden_states = self.input_layernorm(hidden_states)
576
+
577
+ # Self Attention
578
+ hidden_states, self_attn_weights = self.self_attn(
579
+ hidden_states=hidden_states,
580
+ attention_mask=attention_mask,
581
+ position_ids=position_ids,
582
+ past_key_values=past_key_values,
583
+ output_attentions=output_attentions,
584
+ use_cache=use_cache,
585
+ cache_position=cache_position,
586
+ position_embeddings=position_embeddings,
587
+ **kwargs,
588
+ )
589
+ hidden_states = residual + hidden_states
590
+
591
+ # Fully Connected
592
+ residual = hidden_states
593
+ hidden_states = self.post_attention_layernorm(hidden_states)
594
+ hidden_states = self.mlp(hidden_states)
595
+ hidden_states = residual + hidden_states
596
+
597
+ outputs = (hidden_states,)
598
+ if output_attentions:
599
+ outputs += (self_attn_weights,)
600
+
601
+ return outputs
602
+
603
+ RWKV6QWEN2_START_DOCSTRING = r"""
604
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
605
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
606
+ etc.)
607
+
608
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
609
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
610
+ and behavior.
611
+
612
+ Parameters:
613
+ config ([`RWKV6Qwen2Config`]):
614
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
615
+ load the weights associated with the model, only the configuration. Check out the
616
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
617
+ """
618
+
619
+
620
+ @add_start_docstrings(
621
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
622
+ RWKV6QWEN2_START_DOCSTRING,
623
+ )
624
+ class RWKV6Qwen2PreTrainedModel(PreTrainedModel):
625
+ config_class = RWKV6Qwen2Config
626
+ base_model_prefix = "model"
627
+ supports_gradient_checkpointing = True
628
+ _no_split_modules = ["RWKV6Qwen2DecoderLayer"]
629
+ _skip_keys_device_placement = "past_key_values"
630
+ _supports_flash_attn_2 = True
631
+ _supports_sdpa = True
632
+ _supports_cache_class = True
633
+ _supports_quantized_cache = True
634
+ _supports_static_cache = True
635
+
636
+ def _init_weights(self, module):
637
+ std = self.config.initializer_range
638
+ if isinstance(module, nn.Linear):
639
+ module.weight.data.normal_(mean=0.0, std=std)
640
+ if module.bias is not None:
641
+ module.bias.data.zero_()
642
+ elif isinstance(module, nn.Embedding):
643
+ module.weight.data.normal_(mean=0.0, std=std)
644
+ if module.padding_idx is not None:
645
+ module.weight.data[module.padding_idx].zero_()
646
+
647
+
648
+ RWKV6QWEN2_INPUTS_DOCSTRING = r"""
649
+ Args:
650
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
651
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
652
+ it.
653
+
654
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
655
+ [`PreTrainedTokenizer.__call__`] for details.
656
+
657
+ [What are input IDs?](../glossary#input-ids)
658
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
659
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
660
+
661
+ - 1 for tokens that are **not masked**,
662
+ - 0 for tokens that are **masked**.
663
+
664
+ [What are attention masks?](../glossary#attention-mask)
665
+
666
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
667
+ [`PreTrainedTokenizer.__call__`] for details.
668
+
669
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
670
+ `past_key_values`).
671
+
672
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
673
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
674
+ information on the default strategy.
675
+
676
+ - 1 indicates the head is **not masked**,
677
+ - 0 indicates the head is **masked**.
678
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
679
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
680
+ config.n_positions - 1]`.
681
+
682
+ [What are position IDs?](../glossary#position-ids)
683
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
684
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
685
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
686
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
687
+
688
+ Two formats are allowed:
689
+ - a [`~cache_utils.Cache`] instance, see our
690
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
691
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
692
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
693
+ cache format.
694
+
695
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
696
+ legacy cache format will be returned.
697
+
698
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
699
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
700
+ of shape `(batch_size, sequence_length)`.
701
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
702
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
703
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
704
+ model's internal embedding lookup matrix.
705
+ use_cache (`bool`, *optional*):
706
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
707
+ `past_key_values`).
708
+ output_attentions (`bool`, *optional*):
709
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
710
+ tensors for more detail.
711
+ output_hidden_states (`bool`, *optional*):
712
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
713
+ more detail.
714
+ return_dict (`bool`, *optional*):
715
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
716
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
717
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
718
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
719
+ the complete sequence length.
720
+ """
721
+
722
+ @add_start_docstrings(
723
+ "The bare RWKV6Qwen2 Model outputting raw hidden-states without any specific head on top.",
724
+ RWKV6QWEN2_START_DOCSTRING,
725
+ )
726
+ class RWKV6Qwen2Model(RWKV6Qwen2PreTrainedModel):
727
+ """
728
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
729
+
730
+ Args:
731
+ config: RWKV6Qwen2Config
732
+ """
733
+
734
+ def __init__(self, config: RWKV6Qwen2Config):
735
+ super().__init__(config)
736
+ self.padding_idx = config.pad_token_id
737
+ self.vocab_size = config.vocab_size
738
+
739
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
740
+ self.layers = nn.ModuleList(
741
+ [RWKV6Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
742
+ )
743
+ self._attn_implementation = config._attn_implementation
744
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
745
+ self.rotary_emb = Qwen2RotaryEmbedding(config=config)
746
+
747
+ self.gradient_checkpointing = False
748
+ # Initialize weights and apply final processing
749
+ self.post_init()
750
+
751
+ def get_input_embeddings(self):
752
+ return self.embed_tokens
753
+
754
+ def set_input_embeddings(self, value):
755
+ self.embed_tokens = value
756
+
757
+ @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
758
+ def forward(
759
+ self,
760
+ input_ids: torch.LongTensor = None,
761
+ attention_mask: Optional[torch.Tensor] = None,
762
+ position_ids: Optional[torch.LongTensor] = None,
763
+ past_key_values: Optional[Cache] = None,
764
+ inputs_embeds: Optional[torch.FloatTensor] = None,
765
+ use_cache: Optional[bool] = None,
766
+ output_attentions: Optional[bool] = None,
767
+ output_hidden_states: Optional[bool] = None,
768
+ return_dict: Optional[bool] = None,
769
+ cache_position: Optional[torch.LongTensor] = None,
770
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
771
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
772
+ output_hidden_states = (
773
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
774
+ )
775
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
776
+
777
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
778
+
779
+ if (input_ids is None) ^ (inputs_embeds is not None):
780
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
781
+
782
+ if self.gradient_checkpointing and self.training:
783
+ if use_cache:
784
+ logger.warning_once(
785
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
786
+ )
787
+ use_cache = False
788
+
789
+ # kept for BC (non `Cache` `past_key_values` inputs)
790
+ #return_legacy_cache = False
791
+ if use_cache and not isinstance(past_key_values, RWKV6State):
792
+ #return_legacy_cache = True
793
+ past_key_values = RWKV6State()
794
+ # if past_key_values is None:
795
+ # past_key_values = DynamicCache()
796
+ # else:
797
+ # past_key_values = DynamicCache.from_legacy_cache(past_key_values)
798
+ # logger.warning_once(
799
+ # "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
800
+ # "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
801
+ # "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
802
+ # )
803
+
804
+ if inputs_embeds is None:
805
+ inputs_embeds = self.embed_tokens(input_ids)
806
+
807
+ if cache_position is None:
808
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
809
+ cache_position = torch.arange(
810
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
811
+ )
812
+
813
+ if position_ids is None:
814
+ position_ids = cache_position.unsqueeze(0)
815
+
816
+ # causal_mask = self._update_causal_mask(
817
+ # attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
818
+ # )
819
+
820
+ causal_mask = None
821
+
822
+ hidden_states = inputs_embeds
823
+
824
+ # create position embeddings to be shared across the decoder layers
825
+ position_embeddings = None
826
+ if self.config.use_rope:
827
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
828
+
829
+ # decoder layers
830
+ all_hidden_states = () if output_hidden_states else None
831
+ all_self_attns = () if output_attentions else None
832
+ next_decoder_cache = None
833
+
834
+ for decoder_layer in self.layers:
835
+ if output_hidden_states:
836
+ all_hidden_states += (hidden_states,)
837
+
838
+ if self.gradient_checkpointing and self.training:
839
+ layer_outputs = self._gradient_checkpointing_func(
840
+ decoder_layer.__call__,
841
+ hidden_states,
842
+ causal_mask,
843
+ position_ids,
844
+ past_key_values,
845
+ output_attentions,
846
+ use_cache,
847
+ cache_position,
848
+ position_embeddings,
849
+ )
850
+ else:
851
+ layer_outputs = decoder_layer(
852
+ hidden_states,
853
+ attention_mask=attention_mask,
854
+ position_ids=position_ids,
855
+ past_key_values=past_key_values,
856
+ output_attentions=output_attentions,
857
+ use_cache=use_cache,
858
+ cache_position=cache_position,
859
+ position_embeddings=position_embeddings,
860
+ )
861
+
862
+ hidden_states = layer_outputs[0]
863
+
864
+ if output_attentions:
865
+ all_self_attns += (layer_outputs[1],)
866
+
867
+ hidden_states = self.norm(hidden_states)
868
+
869
+ # add hidden states from the last decoder layer
870
+ if output_hidden_states:
871
+ all_hidden_states += (hidden_states,)
872
+
873
+ #if return_legacy_cache:
874
+ # next_cache = next_cache.to_legacy_cache()
875
+
876
+ if not return_dict:
877
+ return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None)
878
+ return BaseModelOutputWithPast(
879
+ last_hidden_state=hidden_states,
880
+ past_key_values=past_key_values,
881
+ hidden_states=all_hidden_states,
882
+ attentions=all_self_attns,
883
+ )
884
+
885
+ class RWKV6Qwen2ForCausalLM(RWKV6Qwen2PreTrainedModel, GenerationMixin):
886
+ _tied_weights_keys = ["lm_head.weight"]
887
+
888
+ def __init__(self, config):
889
+ super().__init__(config)
890
+ self.model = RWKV6Qwen2Model(config)
891
+ self.vocab_size = config.vocab_size
892
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
893
+
894
+ # Initialize weights and apply final processing
895
+ self.post_init()
896
+
897
+ def get_input_embeddings(self):
898
+ return self.model.embed_tokens
899
+
900
+ def set_input_embeddings(self, value):
901
+ self.model.embed_tokens = value
902
+
903
+ def get_output_embeddings(self):
904
+ return self.lm_head
905
+
906
+ def set_output_embeddings(self, new_embeddings):
907
+ self.lm_head = new_embeddings
908
+
909
+ def set_decoder(self, decoder):
910
+ self.model = decoder
911
+
912
+ def get_decoder(self):
913
+ return self.model
914
+
915
+ @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
916
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
917
+ def forward(
918
+ self,
919
+ input_ids: torch.LongTensor = None,
920
+ attention_mask: Optional[torch.Tensor] = None,
921
+ position_ids: Optional[torch.LongTensor] = None,
922
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
923
+ inputs_embeds: Optional[torch.FloatTensor] = None,
924
+ labels: Optional[torch.LongTensor] = None,
925
+ use_cache: Optional[bool] = None,
926
+ output_attentions: Optional[bool] = None,
927
+ output_hidden_states: Optional[bool] = None,
928
+ return_dict: Optional[bool] = None,
929
+ cache_position: Optional[torch.LongTensor] = None,
930
+ num_logits_to_keep: int = 0,
931
+ **loss_kwargs,
932
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
933
+ r"""
934
+ Args:
935
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
936
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
937
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
938
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
939
+
940
+ num_logits_to_keep (`int`, *optional*):
941
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
942
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
943
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
944
+
945
+ Returns:
946
+
947
+ Example:
948
+
949
+ ```python
950
+ >>> from transformers import AutoTokenizer, RWKV6Qwen2ForCausalLM
951
+
952
+ >>> model = RWKV6Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
953
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
954
+
955
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
956
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
957
+
958
+ >>> # Generate
959
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
960
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
961
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
962
+ ```"""
963
+
964
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
965
+ output_hidden_states = (
966
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
967
+ )
968
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
969
+
970
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
971
+ outputs = self.model(
972
+ input_ids=input_ids,
973
+ attention_mask=attention_mask,
974
+ position_ids=position_ids,
975
+ past_key_values=past_key_values,
976
+ inputs_embeds=inputs_embeds,
977
+ use_cache=use_cache,
978
+ output_attentions=output_attentions,
979
+ output_hidden_states=output_hidden_states,
980
+ return_dict=return_dict,
981
+ cache_position=cache_position,
982
+ )
983
+
984
+ hidden_states = outputs[0]
985
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
986
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
987
+
988
+ loss = None
989
+ if labels is not None:
990
+ loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
991
+
992
+ if not return_dict:
993
+ output = (logits,) + outputs[1:]
994
+ return (loss,) + output if loss is not None else output
995
+
996
+ return CausalLMOutputWithPast(
997
+ loss=loss,
998
+ logits=logits,
999
+ past_key_values=outputs.past_key_values,
1000
+ hidden_states=outputs.hidden_states,
1001
+ attentions=outputs.attentions,
1002
+ )
1003
+
1004
+ def prepare_inputs_for_generation(
1005
+ self,
1006
+ input_ids: torch.LongTensor,
1007
+ past_key_values: Optional[Cache] = None,
1008
+ attention_mask: Optional[torch.LongTensor] = None,
1009
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1010
+ cache_position: Optional[torch.LongTensor] = None,
1011
+ **kwargs,
1012
+ ):
1013
+ # only last token for `inputs_ids` if the `past_key_values` is not empty.
1014
+ if past_key_values is not None and len(past_key_values) > 0:
1015
+ input_ids = input_ids[:, -1:]
1016
+
1017
+ model_inputs = {
1018
+ 'past_key_values': past_key_values,
1019
+ 'attention_mask': attention_mask,
1020
+ 'cache_position': cache_position,
1021
+ }
1022
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1023
+ if inputs_embeds is not None and past_key_values is None:
1024
+ model_inputs['inputs_embeds'] = inputs_embeds
1025
+ else:
1026
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1027
+ # recompiles graphs as the stride of the inputs is a guard.
1028
+ # Ref: https://github.com/huggingface/transformers/pull/29114
1029
+ # TODO: use `next_tokens` directly instead.
1030
+ model_inputs['input_ids'] = input_ids.contiguous()
1031
+
1032
+ model_inputs.update(**kwargs)
1033
+
1034
+ # 8. Remove unexpected `generate` inputs (TODO @joao: fix trainer and examples)
1035
+ model_inputs.pop("labels", None)
1036
+
1037
+ return model_inputs
1038
+
1039
+ @add_start_docstrings(
1040
+ """
1041
+ The RWKV6Qwen2 Model transformer with a sequence classification head on top (linear layer).
1042
+
1043
+ [`RWKV6Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1044
+ (e.g. GPT-2) do.
1045
+
1046
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1047
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1048
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1049
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1050
+ each row of the batch).
1051
+ """,
1052
+ RWKV6QWEN2_START_DOCSTRING,
1053
+ )
1054
+ class RWKV6Qwen2ForSequenceClassification(RWKV6Qwen2PreTrainedModel):
1055
+ def __init__(self, config):
1056
+ super().__init__(config)
1057
+ self.num_labels = config.num_labels
1058
+ self.model = RWKV6Qwen2Model(config)
1059
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1060
+
1061
+ # Initialize weights and apply final processing
1062
+ self.post_init()
1063
+
1064
+ def get_input_embeddings(self):
1065
+ return self.model.embed_tokens
1066
+
1067
+ def set_input_embeddings(self, value):
1068
+ self.model.embed_tokens = value
1069
+
1070
+ @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
1071
+ def forward(
1072
+ self,
1073
+ input_ids: torch.LongTensor = None,
1074
+ attention_mask: Optional[torch.Tensor] = None,
1075
+ position_ids: Optional[torch.LongTensor] = None,
1076
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1077
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1078
+ labels: Optional[torch.LongTensor] = None,
1079
+ use_cache: Optional[bool] = None,
1080
+ output_attentions: Optional[bool] = None,
1081
+ output_hidden_states: Optional[bool] = None,
1082
+ return_dict: Optional[bool] = None,
1083
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1084
+ r"""
1085
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1086
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1087
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1088
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1089
+ """
1090
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1091
+
1092
+ transformer_outputs = self.model(
1093
+ input_ids,
1094
+ attention_mask=attention_mask,
1095
+ position_ids=position_ids,
1096
+ past_key_values=past_key_values,
1097
+ inputs_embeds=inputs_embeds,
1098
+ use_cache=use_cache,
1099
+ output_attentions=output_attentions,
1100
+ output_hidden_states=output_hidden_states,
1101
+ return_dict=return_dict,
1102
+ )
1103
+ hidden_states = transformer_outputs[0]
1104
+ logits = self.score(hidden_states)
1105
+
1106
+ if input_ids is not None:
1107
+ batch_size = input_ids.shape[0]
1108
+ else:
1109
+ batch_size = inputs_embeds.shape[0]
1110
+
1111
+ if self.config.pad_token_id is None and batch_size != 1:
1112
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1113
+ if self.config.pad_token_id is None:
1114
+ sequence_lengths = -1
1115
+ else:
1116
+ if input_ids is not None:
1117
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1118
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1119
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1120
+ sequence_lengths = sequence_lengths.to(logits.device)
1121
+ else:
1122
+ sequence_lengths = -1
1123
+
1124
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1125
+
1126
+ loss = None
1127
+ if labels is not None:
1128
+ labels = labels.to(logits.device)
1129
+ if self.config.problem_type is None:
1130
+ if self.num_labels == 1:
1131
+ self.config.problem_type = "regression"
1132
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1133
+ self.config.problem_type = "single_label_classification"
1134
+ else:
1135
+ self.config.problem_type = "multi_label_classification"
1136
+
1137
+ if self.config.problem_type == "regression":
1138
+ loss_fct = MSELoss()
1139
+ if self.num_labels == 1:
1140
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1141
+ else:
1142
+ loss = loss_fct(pooled_logits, labels)
1143
+ elif self.config.problem_type == "single_label_classification":
1144
+ loss_fct = CrossEntropyLoss()
1145
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1146
+ elif self.config.problem_type == "multi_label_classification":
1147
+ loss_fct = BCEWithLogitsLoss()
1148
+ loss = loss_fct(pooled_logits, labels)
1149
+ if not return_dict:
1150
+ output = (pooled_logits,) + transformer_outputs[1:]
1151
+ return ((loss,) + output) if loss is not None else output
1152
+
1153
+ return SequenceClassifierOutputWithPast(
1154
+ loss=loss,
1155
+ logits=pooled_logits,
1156
+ past_key_values=transformer_outputs.past_key_values,
1157
+ hidden_states=transformer_outputs.hidden_states,
1158
+ attentions=transformer_outputs.attentions,
1159
+ )
1160
+
1161
+
1162
+ @add_start_docstrings(
1163
+ """
1164
+ The RWKV6Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1165
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1166
+ """,
1167
+ RWKV6QWEN2_START_DOCSTRING,
1168
+ )
1169
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->RWKV6Qwen2, LLAMA->RWKV6QWEN2
1170
+ class RWKV6Qwen2ForTokenClassification(RWKV6Qwen2PreTrainedModel):
1171
+ def __init__(self, config):
1172
+ super().__init__(config)
1173
+ self.num_labels = config.num_labels
1174
+ self.model = RWKV6Qwen2Model(config)
1175
+ if getattr(config, "classifier_dropout", None) is not None:
1176
+ classifier_dropout = config.classifier_dropout
1177
+ elif getattr(config, "hidden_dropout", None) is not None:
1178
+ classifier_dropout = config.hidden_dropout
1179
+ else:
1180
+ classifier_dropout = 0.1
1181
+ self.dropout = nn.Dropout(classifier_dropout)
1182
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1183
+
1184
+ # Initialize weights and apply final processing
1185
+ self.post_init()
1186
+
1187
+ def get_input_embeddings(self):
1188
+ return self.model.embed_tokens
1189
+
1190
+ def set_input_embeddings(self, value):
1191
+ self.model.embed_tokens = value
1192
+
1193
+ @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
1194
+ @add_code_sample_docstrings(
1195
+ checkpoint=_CHECKPOINT_FOR_DOC,
1196
+ output_type=TokenClassifierOutput,
1197
+ config_class=_CONFIG_FOR_DOC,
1198
+ )
1199
+ def forward(
1200
+ self,
1201
+ input_ids: Optional[torch.LongTensor] = None,
1202
+ attention_mask: Optional[torch.Tensor] = None,
1203
+ position_ids: Optional[torch.LongTensor] = None,
1204
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1205
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1206
+ labels: Optional[torch.LongTensor] = None,
1207
+ use_cache: Optional[bool] = None,
1208
+ output_attentions: Optional[bool] = None,
1209
+ output_hidden_states: Optional[bool] = None,
1210
+ return_dict: Optional[bool] = None,
1211
+ ) -> Union[Tuple, TokenClassifierOutput]:
1212
+ r"""
1213
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1214
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1215
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1216
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1217
+ """
1218
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1219
+
1220
+ outputs = self.model(
1221
+ input_ids,
1222
+ attention_mask=attention_mask,
1223
+ position_ids=position_ids,
1224
+ past_key_values=past_key_values,
1225
+ inputs_embeds=inputs_embeds,
1226
+ use_cache=use_cache,
1227
+ output_attentions=output_attentions,
1228
+ output_hidden_states=output_hidden_states,
1229
+ return_dict=return_dict,
1230
+ )
1231
+ sequence_output = outputs[0]
1232
+ sequence_output = self.dropout(sequence_output)
1233
+ logits = self.score(sequence_output)
1234
+
1235
+ loss = None
1236
+ if labels is not None:
1237
+ loss = self.loss_function(logits, labels, self.config)
1238
+
1239
+ if not return_dict:
1240
+ output = (logits,) + outputs[2:]
1241
+ return ((loss,) + output) if loss is not None else output
1242
+
1243
+ return TokenClassifierOutput(
1244
+ loss=loss,
1245
+ logits=logits,
1246
+ hidden_states=outputs.hidden_states,
1247
+ attentions=outputs.attentions,
1248
+ )
1249
+
1250
+
1251
+ @add_start_docstrings(
1252
+ """
1253
+ The RWKV6Qwen2 Model transformer with a span classification head on top for extractive question-answering tasks like
1254
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1255
+ """,
1256
+ RWKV6QWEN2_START_DOCSTRING,
1257
+ )
1258
+ # Copied from transformers.models.mistral.modeling_mistral.MistralForQuestionAnswering with Mistral->RWKV6Qwen2, MISTRAL->RWKV6QWEN2
1259
+ class RWKV6Qwen2ForQuestionAnswering(RWKV6Qwen2PreTrainedModel):
1260
+ base_model_prefix = "model"
1261
+
1262
+ # Copied from models.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->RWKV6Qwen2
1263
+ def __init__(self, config):
1264
+ super().__init__(config)
1265
+ self.model = RWKV6Qwen2Model(config)
1266
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1267
+
1268
+ # Initialize weights and apply final processing
1269
+ self.post_init()
1270
+
1271
+ def get_input_embeddings(self):
1272
+ return self.model.embed_tokens
1273
+
1274
+ def set_input_embeddings(self, value):
1275
+ self.model.embed_tokens = value
1276
+
1277
+ @add_start_docstrings_to_model_forward(RWKV6QWEN2_INPUTS_DOCSTRING)
1278
+ def forward(
1279
+ self,
1280
+ input_ids: Optional[torch.LongTensor] = None,
1281
+ attention_mask: Optional[torch.FloatTensor] = None,
1282
+ position_ids: Optional[torch.LongTensor] = None,
1283
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1284
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1285
+ start_positions: Optional[torch.LongTensor] = None,
1286
+ end_positions: Optional[torch.LongTensor] = None,
1287
+ output_attentions: Optional[bool] = None,
1288
+ output_hidden_states: Optional[bool] = None,
1289
+ return_dict: Optional[bool] = None,
1290
+ **kwargs,
1291
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1292
+ r"""
1293
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1294
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1295
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1296
+ are not taken into account for computing the loss.
1297
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1298
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1299
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1300
+ are not taken into account for computing the loss.
1301
+ """
1302
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1303
+
1304
+ outputs = self.model(
1305
+ input_ids,
1306
+ attention_mask=attention_mask,
1307
+ position_ids=position_ids,
1308
+ past_key_values=past_key_values,
1309
+ inputs_embeds=inputs_embeds,
1310
+ output_attentions=output_attentions,
1311
+ output_hidden_states=output_hidden_states,
1312
+ return_dict=return_dict,
1313
+ )
1314
+
1315
+ sequence_output = outputs[0]
1316
+
1317
+ logits = self.qa_outputs(sequence_output)
1318
+ start_logits, end_logits = logits.split(1, dim=-1)
1319
+ start_logits = start_logits.squeeze(-1).contiguous()
1320
+ end_logits = end_logits.squeeze(-1).contiguous()
1321
+
1322
+ loss = None
1323
+ if start_positions is not None and end_positions is not None:
1324
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
1325
+
1326
+ if not return_dict:
1327
+ output = (start_logits, end_logits) + outputs[2:]
1328
+ return ((loss,) + output) if loss is not None else output
1329
+
1330
+ return QuestionAnsweringModelOutput(
1331
+ loss=loss,
1332
+ start_logits=start_logits,
1333
+ end_logits=end_logits,
1334
+ hidden_states=outputs.hidden_states,
1335
+ attentions=outputs.attentions,
1336
+ )